Organization:
NASA Goddard Space Flight Center
Business Address:
Laboratory for Atmospheres
Greenbelt, MD 20771-0001
United StatesFirst Author Publications:
- Kawa, S. R., et al. (2010), Simulation studies for a space-based CO2 lidar mission, Tellus, 62, 759-769, doi:10.1111/j.1600-0889.2010.00486.x.
- Kawa, S. R., et al. (2009), Sensitivity of polar stratospheric ozone loss to uncertainties in chemical reaction kinetics, Atmos. Chem. Phys., 9, 8651-8660, doi:10.5194/acp-9-8651-2009.
- Kawa, S. R., et al. (2005), Fall vortex ozone as a predictor of springtime total ozone at high northern latitudes, Atmos. Chem. Phys., 5, 1655-1663, doi:10.5194/acp-5-1655-2005.
- Kawa, S. R., et al. (2003), Interaction between dynamics and chemistry of ozone in the setup phase of the Northern Hemisphere polar vortex, J. Geophys. Res., 108, 8310, doi:10.1029/2001JD001527.
- Kawa, S. R., et al. (1992), The Arctic Polar Stratospheric Cloud Aerosol: Aircraft Measurements of Reactive Nitrogen, Total Water, and particles, J. Geophys. Res., 97, 7925-7938.
- Kawa, S. R., et al. (1992), Photochemical partitioning of the reactive nitrogen and chlorine reservoirs in the high altitude stratosphere, J. Geophys. Res., 97, 7905-7923.
- Kawa, S. R., et al. (1990), Measurement of Total Reactive Nitrogen During the Airborne Arctic Stratospheric Expedition, Geophys. Res. Lett., 17, 485-488.
- Kawa, S. R., et al. (1990), Interpretation of Aircraft Measurements of NO, ClO, and O3 in the Lower Stratosphere, J. Geophys. Res., 95, 18,597-18.
- Kawa, S. R., and R. Pearson (1989), An Observational Study of Stratocumulus Entrainment and Thermodynamics, J. Atmos. Sci., 46, 2659-2661.
- Kawa, S. R., and R. Pearson (1989), Ozone Budgets from the Dynamics and Chemistry of Marine Stratocumulus (DYCOMS) Experiment, J. Geophys. Res., 94, 9809-9817.
Co-Authored Publications:
- Hannun, R. A., et al. (2020), Spatial heterogeneity in CO2, CH4, and energy fluxes: insights from airborne eddy covariance measurements over the Mid-Atlantic region, Environmental Research Letters., 15, 035008, doi:10.1088/1748-9326/ab7391.
- Crowell, S., et al. (2018), On the Ability of Space-Based Passive and Active Remote Sensing Observations of CO2 to Detect Flux Perturbations to the Carbon Cycle, J. Geophys. Res., 123, 1460-1477, doi:10.1002/2017JD027836.
- Mao, J., et al. (2018), Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar, Atmos. Meas. Tech., 11, 127-140, doi:10.5194/amt-11-127-2018.
- Wang, J. S., et al. (2018), A global synthesis inversion analysis of recent variability in CO2 fluxes using GOSAT and in situ observations, Atmos. Chem. Phys., 18, 11097-11124, doi:10.5194/acp-18-11097-2018.
- Wolfe, G. M., et al. (2018), The NASA Carbon Airborne Flux Experiment (CARAFE): instrumentation and methodology, Atmos. Meas. Tech., 11, 1757-1776, doi:10.5194/amt-11-1757-2018.
- Hammerling, D. M., et al. (2015), Detectability of CO2 flux signals by a space-based lidar mission, J. Geophys. Res., 120, 1794-1807, doi:10.1002/2014JD022483.
- Kiemle, C., et al. (2015), The global distribution of cloud gaps in CALIPSO data, J. Quant. Spectrosc. Radiat. Transfer, 153, 95-101, doi:10.1016/j.jqsrt.2014.12.001.
- Ott, L., et al. (2015), Assessing the magnitude of CO2 flux uncertainty in atmospheric CO2 records using products from NASA’s Carbon Monitoring Flux Pilot Project, J. Geophys. Res., 120, 734-765, doi:10.1002/2014JD022411.
- Kiemle, C., et al. (2014), Performance simulations for a spaceborne methane lidar mission, J. Geophys. Res., 119, doi:10.1002/2013JD021253.
- Wang, J. S., et al. (2014), A regional CO2 observing system simulation experiment for the ASCENDS satellite mission, Atmos. Chem. Phys., 14, 12897-12914, doi:10.5194/acp-14-12897-2014.
- Weaver, C., et al. (2014), Retrieval of methane source strengths in Europe using a simple modeling approach to assess the potential of spaceborne lidar observations, Atmos. Chem. Phys., 14, 2625-2637, doi:10.5194/acp-14-2625-2014.
- Belikov, D. A., et al. (2013), Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection, Atmos. Chem. Phys., 13, 1093-1114, doi:10.5194/acp-13-1093-2013.
- Chatterjee, A., et al. (2013), Background error covariance estimation for atmospheric CO2 data assimilation, J. Geophys. Res., 118, 10140-10154, doi:10.1002/jgrd.50654.
- Saito, R., et al. (2013), TransCom model simulations of methane: Comparison of vertical profiles with aircraft measurements, J. Geophys. Res., 118, 3891-3904, doi:10.1002/jgrd.50380.
- Shiga, Y. P., et al. (2013), In-situ CO2 monitoring network evaluation and design: A criterion based on atmospheric CO2 variability, J. Geophys. Res., 118, 2007-2018, doi:10.1002/jgrd.50168.
- Fishman, J., et al. (2012), The United States’ next generation of atmospheric composition and coastal ecosystem measurements NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission, Bull. Amer. Meteor. Soc., 93, 1547-1566.
- Fishman, J., et al. (2012), The United States’ Next Generation Of Atmospheric Composition And Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission, Bull. Am. Meteorol. Soc., 1547-1566.
- Hammerling, D. M., et al. (2012), Global CO2 distributions over land from the Greenhouse Gases Observing Satellite (GOSAT), Geophys. Res. Lett., 39, L08804, doi:10.1029/2012GL051203.
- Hammerling, D. M., A. M. Michalak, and S. R. Kawa (2012), Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2, J. Geophys. Res., 117, D06306, doi:10.1029/2011JD017015.
- Parazoo, N. C., et al. (2012), CO2 flux estimation errors associated with moist atmospheric processes, Atmos. Chem. Phys., 12, 6405-6416, doi:10.5194/acp-12-6405-2012.
- Patra, P. K., et al. (2011), TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere, Atmos. Chem. Phys., 11, 12813-12837, doi:10.5194/acp-11-12813-2011.
- Bian, H., et al. (2010), Multiscale carbon monoxide and aerosol correlations from satellite measurements and the GOCART model: Implication for emissions and atmospheric evolution, J. Geophys. Res., 115, D07302, doi:10.1029/2009JD012781.
- Butler, M. P., et al. (2010), Using continental observations in global atmospheric inversions of CO2: North American carbon sources and sinks, Tellus, doi:10.1111/j.1600-0889.2010.00501.x.
- Toon, B., et al. (2010), Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J04, doi:10.1029/2009JD013073.
- Newman, P., et al. (2009), What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?, Atmos. Chem. Phys., 9, 2113-2128, doi:10.5194/acp-9-2113-2009.
- Alkhaled, A. A., A. M. Michalak, and S. R. Kawa (2008), Using CO2 spatial variability to quantify representation errors of satellite CO2 retrievals, Geophys. Res. Lett., 35, L16813, doi:10.1029/2008GL034528.
- Alkhaled, A. A., et al. (2008), A global evaluation of the regional spatial variability of column integrated CO2 distributions, J. Geophys. Res., 113, D20303, doi:10.1029/2007JD009693.
- Parazoo, N. C., et al. (2008), Mechanisms for synoptic variations of atmospheric CO2 in North America, South America and Europe, Atmos. Chem. Phys., 8, 7239-7254, doi:10.5194/acp-8-7239-2008.
- Bian, H., et al. (2007), Sensitivity of global CO simulations to uncertainties in biomass burning sources, J. Geophys. Res., 112, D23308, doi:10.1029/2006JD008376.
- Bian, H., et al. (2006), A test of sensitivity to convective transport in a global atmospheric CO2 simulation, Tellus, 58B, 463-475, doi:10.1111/j.1600-0889.2006.00212.x.
- Abuhassan, N., and S. R. Kawa (2002), Fabry-Perot Interferometer for Column CO2, NASA Earth Science Technology Conference, 2002, Pasadena, CA.
- Fahey, D., et al. (2000), Ozone destruction and production rates between spring and autumn in the Arctic stratosphere, Geophys. Res. Lett., 27:, 2605-2608.
- Keim, E. R., et al. (1996), Observations of large reductions in the NO/NOy ratio near the mid-latitude tropopause and the role of heterogeneous chemistry, Geophys. Res. Lett., 23, 3223-3226.
- Fahey, D., et al. (1993), In Situ Measurements Constraining the Role of Sulphate Aerosols in Mid-Latitude Ozone Depletion, Nature, 363, 509-514.
- Loewenstein, M., et al. (1993), New Observations of the NOy/N2O Correlation in the Lower Stratosphere, Geophys. Res. Lett., 20, 2531-2534, doi:10.1029/93GL03004.
- Murphy, D., et al. (1993), Reactive nitrogen and its correlation with ozone in the lower stratosphere and upper tropospere, J. Geophys, Res., 98, 8751-8773.
- Dye, J. E., et al. (1992), Particle Size Distributions in Arctic Polar Stratospheric Clouds, Growth and Freezing of Sulfuric Acid Droplets and Implications for Cloud Formation, J. Geophys. Res., 97, 8015-8034.
- Tuck, A. F., et al. (1992), Polar Stratospheric Cloud Processed Air and Potential Vorticity in the Northern Hemisphere Lower Stratosphere at Mid-Latitudes During Winter, J. Geophys. Res., 97, 7883-7904.
- Fahey, D., et al. (1990), Observation of Denitrification and Dehydration in the Winter Polar Stratosphere, Nature, 344, 321-324.
- Fahey, D., et al. (1990), A Diagnostic for Denitrification in the Winter Polar Stratosphere, Nature, 345, 698-702.
- Fahey, D., S. R. Kawa, and R. Chan (1990), Nitric Oxide Measurements in the Arctic Winter Stratosphere, Geophys. Res. Lett., 17, 489-492.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.