Organization:
NASA Goddard Space Flight Center
Business Address:
Laboratory for Atmospheres
Greenbelt, MD 20771
United StatesFirst Author Publications:
- Colarco, P. R., et al. (2014), Impact of satellite viewing-swath width on global and regional aerosol optical thickness statistics and trends, Atmos. Meas. Tech., 7, 2313-2335, doi:10.5194/amt-7-2313-2014.
- Colarco, P. R., et al. (2010), Online simulations of global aerosol distributions in the NASA GEOS‐4 model and comparisons to satellite and ground‐based aerosol optical depth, J. Geophys. Res., 115, D14207, doi:10.1029/2009JD012820.
- Colarco, P. R., et al. (2004), Transport of smoke from Canadian forest fires to the surface near Washington, D.C.: Injection height, entrainment, and optical properties, J. Geophys. Res., 109, D06203, doi:10.1029/2003JD004248.
- Colarco, P. R., et al. (2003), Saharan dust transport to the Caribbean during PRIDE: 2. Transport, vertical profiles, and deposition in simulations of in situ and remote sensing observations, J. Geophys. Res., 108, 8590, doi:10.1029/2002JD002659.
- Colarco, P. R., B. Toon, and B. Holben (2003), Saharan dust transport to the Caribbean during PRIDE: 1. Influence of dust sources and removal mechanisms on the timing and magnitude of downwind aerosol optical depth events from simulations of in situ and remote sensing observations, J. Geophys. Res., 108, 8589, doi:10.1029/2002JD002658.
Co-Authored Publications:
- Bian, H., et al. (2024), Observationally constrained analysis of sulfur cycle in the marine atmosphere with NASA ATom measurements and AeroCom model simulations, Atmos. Chem. Phys., doi:10.5194/acp-24-1717-2024.
- Collow, A., et al. (2024), Benchmarking GOCART-2G in the Goddard Earth Observing System (GEOS), Geosci. Model. Dev., doi:10.5194/gmd-17-1443-2024.
- Das, S., et al. (2024), Improved simulations of biomass burning aerosol optical properties and lifetimes in the NASA GEOS Model during the ORACLES-I campaign, Atmos. Chem. Phys., doi:10.5194/acp-24-4421-2024.
- Rocha Lima, et al. (2024), Investigation of observed dust trends over the Middle East region in NASA Goddard Earth Observing System (GEOS) model simulations, Atmos. Chem. Phys., doi:10.5194/acp-24-2443-2024.
- Wei, J., et al. (2024), Long-term mortality burden trends attributed to black carbon and PM2·5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study.
- Xian, P., et al. (2024), Intercomparison of aerosol optical depths from four reanalyses and their multi-reanalysis consensus, Atmos. Chem. Phys., doi:10.5194/acp-24-6385-2024.
- Bian, H., et al. (2023), Observationally constrained analysis of sulfur cycle in the marine atmosphere with NASA ATom measurements and AeroCom model simulations, doi:10.5194/egusphere-2023-1966 (submitted).
- Xian, P., et al. (2023), Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 1: Climatology and trend, Atmos. Chem. Phys., doi:10.5194/acp-22-9915-2022.
- Froyd, K., et al. (2022), Dominant role of mineral dust in cirrus cloud formation revealed by global-scale measurements, Nat. Geosci., 15, 177-183, doi:10.1038/s41561-022-00901-w.
- Reid, J. S., et al. (2022), EXTREME BIOMASS BURNING SMOKE, Community Challenges And Prospects In The Operational Forecasting Of, doi:10.1109/IGARSS47720.2021.9555160.
- Reid, J. S., et al. (2022), A Coupled Evaluation of Operational MODIS and Model Aerosol Products for Maritime Environments Using Sun Photometry: Evaluation of the Fine and Coarse Mode, Evaluation of the Fine and Coarse Mode. Remote Sens., 14, 2978, doi:10.3390/rs14132978.
- Bian, H., et al. (2021), The response of the Amazon ecosystem to the photosynthetically active radiation fields: integrating impacts of biomass burning aerosol and clouds in the NASA GEOS Earth system model, Atmos. Chem. Phys., 21, 14177-14197, doi:10.5194/acp-21-14177-2021.
- Chen, X., et al. (2021), First retrieval of absorbing aerosol height over dark target using TROPOMI oxygen B band: Algorithm development and application for surface particulate matter estimates, Remote Sensing of Environment, 265, 112674, doi:10.1016/j.rse.2021.112674.
- Nault, B., et al. (2021), Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere, Commun Earth Environ, 2, doi:10.1038/s43247-021-00164-0.
- Yu, H., et al. (2021), Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern US in June 2020, Atmos. Chem. Phys., 21, 12359-12383, doi:10.5194/acp-21-12359-2021.
- Zhang, J., et al. (2021), Development of an Ozone Monitoring Instrument (OMI) aerosol index (AI) data assimilation scheme for aerosol modeling over bright surfaces – a step toward direct radiance assimilation in the UV spectrum, Geosci. Model. Dev., 14, 27-42, doi:10.5194/gmd-14-27-2021.
- Meng Zhou, et al. (2021), Nighttime smoke aerosol optical depth over U.S. rural areas: First retrieval from VIIRS moonlight observations, Remote Sensing of Environment, 267, 112717, doi:10.1016/j.rse.2021.112717.
- Das, S., N. Harshvardhan, and P. R. Colarco (2020), The influence of elevated smoke layers on stratocumulus clouds over the SE Atlantic in the NASA Goddard Earth Observing System (GEOS) model, J. Geophys. Res., 125, 1-20, doi:https://doi.org/10.1029/2019JD031209.
- Hodzic, A., et al. (2020), Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models, Atmos. Chem. Phys., 20, 4607-4635, doi:10.5194/acp-20-4607-2020.
- Pan, X., et al. (2020), Six global biomass burning emission datasets: intercomparison and application in one global aerosol model, Atmos. Chem. Phys., 20, 969-994, doi:10.5194/acp-20-969-2020.
- Schill, G., et al. (2020), Widespread biomass burning smoke throughout the remote troposphere, Nat. Geosci., 13, 422-427, doi:10.1038/s41561-020-0586-1.
- Torres, O., et al. (2020), Stratospheric Injection of Massive Smoke Plume From Canadian Boreal Fires in 2017 as Seen by DSCOVR‐EPIC, CALIOP, and OMPS‐LP Observations, J. Geophys. Res., 125, e2020JD032579, doi:10.1029/2020JD032579.
- Bian, H., et al. (2019), Observationally constrained analysis of sea salt aerosol in the marine atmosphere, Atmos. Chem. Phys., 19, 10773-10785, doi:10.5194/acp-19-10773-2019.
- Pérez-Ramírez, D., et al. (2019), Retrievals of aerosol single scattering albedo by multiwavelength lidar T measurements: Evaluations with NASA Langley HSRL-2 during discover-AQ field campaigns ⁎, Remote Sensing of Environment, 222, 144-164, doi:10.1016/j.rse.2018.12.022.
- Levy, R., et al. (2018), Exploring systematic offsets between aerosol products from the two MODIS sensors, Atmos. Meas. Tech., 11, 4073-4092, doi:10.5194/amt-11-4073-2018.
- Peng, X., et al. (2018), Current state of the global operational aerosol multi-model ensemble: An update from the International Cooperative for Aerosol Prediction (ICAP), Q. J. R. Meteorol. Soc., 30, 8, doi:10.1002/qj.3497.
- Rocha-Lima, A., et al. (2018), A detailed characterization of the Saharan dust collected during the Fennec campaign in 2011: in situ ground-based and laboratory measurements, Atmos. Chem. Phys., 18, 1023-1043, doi:10.5194/acp-18-1023-2018.
- Song, Q., et al. (2018), Net radiative effects of dust in the tropical North Atlantic based on integrated satellite observations and in situ measurements, Atmos. Chem. Phys., 18, 11303-11322, doi:10.5194/acp-18-11303-2018.
- Veselovskii, I., et al. (2018), Characterization of smoke and dust episode over West Africa: comparison of MERRA-2 modeling with multiwavelength Mie–Raman lidar observations, Atmos. Meas. Tech., 11, 949-969, doi:10.5194/amt-11-949-2018.
- Whiteman, D., et al. (2018), Retrievals of aerosol microphysics from simulations of spaceborne multiwavelength lidar measurements, J. Quant. Spectrosc. Radiat. Transfer, 205, 27-39, doi:10.1016/j.jqsrt.2017.09.009.
- Buchard-Marchant, V. J., et al. (2017), The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies, J. Climate, 30, 6851-6872, doi:10.1175/JCLI-D-16-0613.1.
- Rollins, A., et al. (2017), The role of sulfur dioxide in stratospheric aerosol formation evaluated by using in situ measurements in the tropical lower stratosphere, Geophys. Res. Lett., 44, doi:10.1002/2017GL072754.
- Buchard, V., et al. (2015), Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis, Atmos. Chem. Phys., 15, 5743-5760, doi:10.5194/acp-15-5743-2015.
- Pan, X., et al. (2015), A multi-model evaluation of aerosols over South Asia: common problems and possible causes, Atmos. Chem. Phys., 15, 5903-5928, doi:10.5194/acp-15-5903-2015.
- Matsui, T., et al. (2014), Current And Future Perspectives Of Aerosol Research At Nasa Goddard Space Flight Center, Bull. Am. Meteorol. Soc., 1-5, doi:10.1175/BAMS-D-13-00153.1.
- Bian, H., et al. (2013), Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign, Atmos. Chem. Phys., 13, 4707-4721, doi:10.5194/acp-13-4707-2013.
- Kessner, A. L., et al. (2013), Remote sensing of surface visibility from space: A look at the United States East Coast, Atmos. Environ., 81, 136-147, doi:10.1016/j.atmosenv.2013.08.050.
- Randles, C., P. R. Colarco, and A. da Silva (2013), Direct and semi-direct aerosol effects in the NASA GEOS-5 AGCM: aerosol-climate interactions due to prognostic versus prescribed aerosols, J. Geophys. Res., 118, 149-169, doi:10.1029/2012JD018388.
- Jiang, J., et al. (2011), Influence of convection and aerosol pollution on ice cloud particle effective radius, Atmos. Chem. Phys., 11, 457-463, doi:10.5194/acp-11-457-2011.
- Liang, Q., et al. (2011), Reactive nitrogen, ozone and ozone production in the Arctic troposphere and the impact of stratosphere-troposphere exchange, Atmos. Chem. Phys., 11, 13181-13199, doi:10.5194/acp-11-13181-2011.
- Su, H., et al. (2011), Observed Increase of TTL Temperature and Water Vapor in Polluted Clouds over Asia, J. Climate, 24, 2728-2736, doi:10.1175/2010JCLI3749.1.
- Ott, L., et al. (2010), Influence of the 2006 Indonesian biomass burning aerosols on tropical dynamics studied with the GEOS‐5 AGCM, J. Geophys. Res., 115, D14121, doi:10.1029/2009JD013181.
- Toon, B., et al. (2010), Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J04, doi:10.1029/2009JD013073.
- Jiang, J., et al. (2009), Aerosol-CO relationship and aerosol effect on ice cloud particle size: Analyses from Aura Microwave Limb Sounder and Aqua Moderate Resolution Imaging Spectroradiometer observations, J. Geophys. Res., 114, D20207, doi:10.1029/2009JD012421.
- Jiang, J., et al. (2008), Clean and polluted clouds: Relationships among pollution, ice clouds, and precipitation in South America, Geophys. Res. Lett., 35, L14804, doi:10.1029/2008GL034631.
- Matichuk, R. I., et al. (2008), Modeling the transport and optical properties of smoke plumes from South American biomass burning, J. Geophys. Res., 113, D07208, doi:10.1029/2007JD009005.
- Wong, S., et al. (2008), Long-term variability in Saharan dust transport and its link to North Atlantic sea surface temperature, Geophys. Res. Lett., 35, L07812, doi:10.1029/2007GL032297.
- Matichuk, R. I., et al. (2007), Modeling the transport and optical properties of smoke aerosols from African savanna fires during the Southern African Regional Science Initiative campaign (SAFARI 2000), J. Geophys. Res., 112, D08203, doi:10.1029/2006JD007528.
- Morris, G. A., et al. (2006), Alaskan and Canadian forest fires exacerbate ozone pollution over Houston, Texas, on 19 and 20 July 2004, J. Geophys. Res., 111, D24S03, doi:10.1029/2006JD007090.
- Wong, S., P. R. Colarco, and A. Dessler (2006), Principal component analysis of the evolution of the Saharan air layer and dust transport: Comparisons between a model simulation and MODIS and AIRS retrievals, J. Geophys. Res., 111, D20109, doi:10.1029/2006JD007093.
- Castanho, A. D. D., et al. (2005), Chemical Characterization of Aerosols on the East Coast of the United States Using Aircraft and Ground-Based Stations during the CLAMS Experiment, J. Atmos. Sci., 62, 934-946.
- Reid, J., et al. (2003), Analysis of measurements of Saharan dust by airborne and groundbased remote sensing methods during the Puerto Rico Dust Experiment (PRIDE), J. Geophys. Res., 108, 8586, doi:10.1029/2002JD002493.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.