Twin Otter - GRC

Synonyms
T. Otter
Hyperspectral Thermal Emissions Spectrometer

The Hyperspectral Thermal Emissions Spectrometer (HyTES) instrument has 512 pixels across track with pixel sizes in the range of 5 to 50 m depending on aircraft flying height and 256 spectral channels between 7.5 and 12 µm. The HyTES design is built upon a Quantum Well Infrared Photodetector (QWIP) focal plane array (FPA) , a cryo-cooled Dyson Spectrometer and a high-efficiency, concave blazed grating, produced using E-beam lithography.

HyTES will be useful for a number of applications, including high-resolution surface temperature and emissivity measurements and volcano observations. HyTES measurements will also be used to help determine scientifically optimal band locations for the thermal infrared (TIR) instrument for the Decadal HyspIRI mission.

Instrument Type
Measurements
Point(s) of Contact
Carbon Dioxide Laser Absorption Spectrometer

The CO2LAS instrument was jointly developed by JPL and Lockheed Martin Coherent Technologies under funding from the NASA Earth Science Technology Office Instrument Incubator Program.

The instrument uses three continuous-wave (c.w.) Th:Ho:YLF lasers, one of which is used as an absolute frequency reference and is locked to a carbon dioxide absorption line in an internal gas cell using a phase modulation spectroscopy scheme. The remaining two lasers are offset frequency locked from the reference laser to provide the online and offline beams that are propagated through the atmosphere. The online and offline beams are expanded to an eye-safe level and transmitted to the ground where they are reflected back to the instrument, collected by the receive optics and detected. The use of the offset frequency-locking scheme together with the absolute frequency reference enables the absolute frequency of the online and offline lasers to be held to within 200 kHz of the desired values. The CO2LAS transceiver uses separate co-axial transmit/receive paths for each of the on-line and off-line channels.

A Doppler frequency shift is induced between the outgoing and return signals by pointing the transmit beams slightly off nadir. This frequency offset, together with a polarization transmit/receive architecture, ensures the receive signals are separated from the transmit signals by both polarization and frequency. The nominal Doppler offset is 15 MHz but this will vary as the aircraft attitude changes. The return signals on each channel are digitized and stored during flight for post-processing. Throughput of the data collection system was increased from ~8% to >20% between 2006 and 2007.

In order to ensure the instrument remains stable, the output power and frequency of all three lasers are monitored. The output power values for the online and offline lasers are used in the determination of the on-line and off-line absorption as part of the LAS measurement. The output power value for the reference laser is used primarily as a laser health status to check the integrity of the CO2 line center lock.

The electronics for the CO2LAS are mounted in two racks that typically mount to the seat rails of the host aircraft. One rack contains the control electronics for the transceiver system, laser controller, frequency locking electronics and provides the user interface for the overall system.

The second rack houses the chiller that supplies the optical transceiver with coolant and the signal processor which receives housekeeping data from the electronics rack, and digitizes, stores and analyzes the lidar return signal. The CO2LAS uses a Gigabit Ethernet system to distribute data across the system and to other computers that can be connected into the gigabit hub located in the back of one of the racks.

Instrument Type
Measurements
Point(s) of Contact
Airborne Topographic Mapper

The Airborne Topographic Mapper (ATM) was a scanning LIDAR developed and used by NASA for observing the Earth's topography for several scientific applications, foremost of which is the measurement of changing arctic and antarctic icecaps and glaciers. It typically flies on aircraft at an altitude between 400 and 800 meters above ground level, and measures topography to an accuracy of ten to twenty centimeters by incorporating measurements from GPS (global positioning system) receivers and inertial navigation system (INS) attitude sensors.

The ATM instruments was based at NASA's Wallops Flight Facility (WFF) in Virginia. They commonly fly aboard the NASA P3-B based at WFF and have flown aboard other P-3 aircraft, the NASA DC-8, several twin-otters (DHC-6), and a C-130; they can fly on most Twin Otter/King Air-class aircraft. The ATM has flown surveys in Greenland nearly every year since 1993. Other uses have included measurement of sea ice, verification of satellite radar and laser altimeters, and measurement of sea-surface elevation and ocean wave characteristics. The altimeter often flies in conjunction with a variety of other instruments. The ATM has been participating in NASA's Operation IceBridge since 2009.

The ATM program was terminated in 2022.

Instrument Type
Measurements
Point(s) of Contact

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.