Publications for ORACLES
| Publication Citation |
|---|
| Pistone, K., P. Zuidema, R. Wood, M. Diamond, A.M. da Silva, G. Ferrada, P. Saide, R. Ueyama, J.-M. Ryoo, L. Pfister, J. Podolske, D. Noone, R. Bennett, E. Stith, G. Carmichael, J. Redemann, C. Flynn, S. LeBlanc, M. Segal-Rozenhaimer, and Y. Shinozuka (2021), Exploring the elevated water vapor signal associated with the free-tropospheric biomass burning plume over the southeast Atlantic Ocean, Atmos. Chem. Phys., doi:10.5194/acp-2020-1322 (submitted). |
| Redemann, J., et al. (2020), An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin, Atmos. Chem. Phys. Discuss., 2020, in review, doi:10.5194/acp-2020-449. |
| Ryoo, J.-M., L. Pfister, R. Ueyama, P. Zuidema, R. Wood, I. Chang, and J. Redemann (2021), A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeast Atlantic during 2016-2018, Atmos. Chem. Phys., doi:10.5194/acp-2021-274. |
| Ryoo, J.-M., L. Pfister, R. Ueyama, P. Zuidema, R. Wood, I. Chang, and J. Redemann (2021), A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 1 – Climatology, Atmos. Chem. Phys., 21, 16689-16707, doi:10.5194/acp-21-16689-2021. |
| Ryoo, J.-M., L. Pfister, R. Ueyama, P. Zuidema, R. Wood, I. Chang, and J. Redemann (2023), A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 2 – Daily and synoptic characteristics, Atmos. Chem. Phys., doi:10.5194/acp-22-14209-2022. |
| Sayer, A.M., N.C. Hsu, J. Lee, W.V. Kim, S. Burton, M.A. Fenn, R.A. Ferrare, M. Kacenelenbogen, S. LeBlanc, K. Pistone, J. Redemann, M. Segal-Rozenhaimer, Y. Shinozuka, and S.-C. Tsay (2019), Two decades observing smoke above clouds in the south-eastern Atlantic Ocean: Deep Blue algorithm updates and validation with ORACLES field campaign data, Atmos. Meas. Tech., 12, 3595-3627, doi:10.5194/amt-12-3595-2019. |
| Sedlacek, A., E. Lewis, T. Onasch, P. Zuidema, J. Redemann, D. Jaffee, and L. Kleinman (2021), Black Carbon Particle Mixing State Analysis Allows Classification of Biomass Burn Aerosol Lifecycle into Three Aging Regimes, Proc. Natl. Acad. Sci., 2021-12527. |
| Segal-Rozenhaimer, M., D.J. Miller, K. Knobelspiesse, J. Redemann, B. Cairns, and M.D. Alexandrov (2018), Development of neural network retrievals of liquid cloud properties from multi-angle polarimetric observations, J. Quant. Spectrosc. Radiat. Transfer, 220, 39-51, doi:10.1016/j.jqsrt.2018.08.030. |
| shinozuka, saide, ferrada, burton, ferrare, doherty, gordon, longo, mallet, Y. feng, Q. Wang, Y. Cheng, A. dobracki, freitag, howell, leblanc, flynn, segal-rozenhaimer, pistone, podolske, stith, bennett, Carmichael, Da Silva, R. Govindaraju, et al. (2019), Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016, Atmos. Chem. Phys. Discuss., doi:https://doi.org/10.5194/acp-2019-678 (submitted). |
| Shinozuka, Y., M.S. Kacenelenbogen, S.P. Burton, S.G. Howell, Zuidema, R.A. Ferrare, S.E. LeBlanc, K. Pistone, S. Broccardo, J. Redemann, K.S. Schmidt, S.P. Cochrane, M. Fenn, S. Freitag, A. Dobracki, M. Segal-Rozenhaimer, and C.J. Flynn (2020), Daytime aerosol optical depth above low-level clouds is similar to that in adjacent clear skies at the same heights: airborne observation above the southeast Atlantic, Atmos. Chem. Phys., doi:10.5194/acp-2019-1007 (submitted). |
| Siméon, A., F. Waquet, J.-C. Péré, F. Ducos, F. Thieuleux, F. Peers, S. Turquety, and I. Chiapello (2021), Combining POLDER-3 satellite observations and WRF-Chem numerical simulations to derive biomass burning aerosol properties over the Southeast Atlantic region, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2021-256. |
| Sinclair, K., B. van Diedenhoven, B. Cairns, M. Alexandrov, A.M. Dzambo, and T. L'Ecuyer (2021), Inference of Precipitation in Warm Stratiform Clouds Using Remotely Sensed Observations of the Cloud Top Droplet Size Distribution, Geophys. Res. Lett.. |
| Star, T., S. LeBlanc, C.J. Flynn, Y. Shinozuka, M. Segal-Rozenhaimer, K. Pistone, M. Kacenelenbogen, J. Redemann, B. Schmid, P. Russell, J. Livingston, and Q. Zhang (2018), 4STAR_codes: 4STAR processing codes, Zenodo, doi:10.5281/zenodo.1492912. |
| Xu, F., G. van Harten, D.J. Diner, A.B. Davis, F.C. Seidel, B. Rheingans, M. Tosca, M.D. Alexandrov, B. Cairns, R.A. Ferrare, S.P. Burton, M.A. Fenn, C.A. Hostetler, R. Wood, and J. Redemann (2018), Coupled Retrieval of Liquid Water Cloud and Above-Cloud Aerosol Properties Using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), J. Geophys. Res., 123, 3175-3204, doi:10.1002/2017JD027926. |
| Xu, F., L. Gao, J. Redemann, C.J. Flynn, W.R. Espinosa, A.M. da Silva, S. Stamnes, S.P. Burton, X. Liu, R. Ferrare, B. Cairns, and O. Dubovik (2021), A Combined Lidar-Polarimeter Inversion Approach for Aerosol Remote Sensing Over Ocean, Front. Remote Sens., 2, 1-24, doi:10.3389/frsen.2021.620871. |
| Yang, Y., M.A. Battaglia, E.S. Robinson, P.F. DeCarlo, K.C. Edwards, T. Fang, S. Kapur, M. Shiraiwa, M. Cesler-Maloney, W.R. Simpson, J.R. Campbell, A. Nenes, J. Mao, and R.J. Weber (2024), pubs.acs.org/estair Article Indoor−Outdoor Oxidative Potential of PM2.5 in Wintertime Fairbanks, Alaska: Impact of Air Infiltration and Indoor Activities, Environ. Sci. Tech. Air, doi:10.1021/acsestair.3c00067. |
| Yang, Y., M.A. Battaglia, M.K. Mohan, E.S. Robinson, P.F. DeCarlo, K.C. Edwards, T. Fang, S. Kapur, M. Shiraiwa, M. Cesler-Maloney, W.R. Simpson, J.R. Campbell, A. Nenes, J. Mao, and R.J. Weber (2024), pubs.acs.org/estair Article Assessing the Oxidative Potential of Outdoor PM2.5 in Wintertime Fairbanks, Alaska, Environ. Sci. Tech. Air, doi:10.1021/acsestair.3c00066. |
| Zhang, J., and P. Zuidema (2019), The diurnal cycle of the smoky marine boundary layer observed during August in the remote southeast Atlantic, Atmos. Chem. Phys., 19, 14493-14516, doi:10.5194/acp-19-14493-2019. |
| Zhang, J., and P. Zuidema (2021), Sunlight-absorbing aerosol amplifies the seasonal cycle in low cloud fraction over the southeast Atlantic, Atmos. Chem. Phys., doi:10.5194/acp-2021-275. |
| Zhou, X., A.S. Ackerman, A.M. Fridlind, R. Wood, and P. Kollias (2017), Impacts of solar-absorbing aerosol layers on the transition of stratocumulus to trade cumulus clouds, Atmos. Chem. Phys., 17, 12725-12742, doi:10.5194/acp-17-12725-2017. |
Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.
