The Operation IceBridge website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.
Steve Platnick
Organization:
NASA Goddard Space Flight Center
Business Address:
Greenbelt, MD 20771
United StatesFirst Author Publications:
- Platnick, S., et al. (2017), The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua, IEEE Trans. Geosci. Remote Sens., 55, 502-525, doi:10.1109/TGRS.2016.2610522.
- Platnick, S., et al. (2003), The MODIS cloud products: Algorithms and examples From Terra, IEEE Trans. Geosci. Remote Sens., 41, 459-473, doi:10.1109/TGRS.2002.808301.
- Platnick, S., et al. (2001), A solar reflectance method for retrieving the optical thickness and droplet size of liquid water clouds over snow and ice surfaces, J. Geophys. Res., 106, 15185-15199.
- Platnick, S., et al. (2000), The role of background cloud microphysics in the radiative formation of ship tracks, J. Atmos. Sci., 57, 2607-2624.
Co-Authored Publications:
- Breen, K., et al. (2024), Abrupt reduction in shipping emission as an inadvertent geoengineering termination shock produces substantial radiative warming Check for updates 1,2 2,3 2 4 1,2 Tianle Yuan , Hua Song , Lazaros Oreopoulos , Robert Wood , Huisheng Bian ,, Nature, doi:10.1038/s43247-024-01442-3.
- Stubenrauch, C., et al. (2024), Lessons Learned from the Updated GEWEX Cloud Assessment Database Claudia J. Stubenrauch1 · Stefan Kinne2 · Giulio Mandorli1 · William B. Rossow3 · David M. Winker4 · Steven A. Ackerman5 · Helene Chepfer1 · Larry Di Girolamo6 · Anne Garnier4,7 · Andrew Hei, Surv. Geophys., doi:10.1007/s10712-024-09824-0.
- Yuan, T., et al. (2024), Abrupt reduction in shipping emission as an inadvertent geoengineering termination shock produces substantial radiative warming Check for updates 1,2 2,3 2 4 1,2 Tianle Yuan , Hua Song , Lazaros Oreopoulos , Robert Wood , Huisheng Bian ,, Nature, doi:10.1038/s43247-024-01442-3.
- Redemann, J., et al. (2021), An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin, Atmos. Chem. Phys., 21, 1507-1563, doi:10.5194/acp-21-1507-2021.
- Peers, F., et al. (2020), Observation of absorbing aerosols above clouds over the South-East Atlantic Ocean from the geostationary satellite SEVIRI - Part 2: Comparison with MODIS and aircraft measurements from the CLARIFY-2017 field campaign, Atmos. Chem. Phys. Discuss., in review, 1-30, doi:10.5194/acp-2019-1176.
- Redemann, J., et al. (2020), An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2020-449.
- Cochrane, S., et al. (2019), Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments, Atmos. Meas. Tech., 12, 6505-6528, doi:10.5194/amt-12-6505-2019.
- Spencer, R. S., et al. (2019), Exploring Aerosols Near Clouds With High‐Spatial‐ Resolution Aircraft Remote Sensing During SEAC4RS, J. Geophys. Res..
- Yang, Y., et al. (2019), Cloud products from the Earth Polychromatic Imaging Camera (EPIC): algorithms and initial evaluation, Atmos. Meas. Tech., 12, 2019-2031, doi:10.5194/amt-12-2019-2019.
- Miller, D. J., et al. (2018), Comparisons of bispectral and polarimetric retrievals of marine boundary layer cloud microphysics: case studies using a LES–satellite retrieval simulator, Atmos. Meas. Tech., 11, 3689-3715, doi:10.5194/amt-11-3689-2018.
- Werner, F., et al. (2018), Improving cloud optical property retrievals for partly cloudy pixels using coincident higher-resolution single band measurements: A feasibility study using ASTER observations, J. Geophys. Res., 123, doi:10.1029/2018JD028902.
- Xu, R., et al. (2018), A pilot study of shortwave spectral fingerprints of smoke aerosols above liquid clouds, J. Quant. Spectrosc. Radiat. Transfer, 221, 38-50, doi:10.1016/j.jqsrt.2018.09.024.
- Ding, J., et al. (2017), Validation of quasi-invariant ice cloud radiative quantities with MODIS satellite-based cloud property retrievals, J. Quant. Spectrosc. Radiat. Transfer, 194, 47-57, doi:10.1016/j.jqsrt.2017.03.025.
- Fauchez, T., et al. (2017), A fast hybrid (3-D/1-D) model for thermal radiative transfer in cirrus via successive orders of scattering, J. Geophys. Res., 122, 344-366, doi:10.1002/2016JD025607.
- Rajapakshe, C., et al. (2017), Seasonally transported aerosol layers over southeast Atlantic are closer to underlying clouds than previously reported, Geophys. Res. Lett., 44, 5818-5825, doi:10.1002/2017GL073559.
- Zhang, Z., et al. (2017), Intercomparisons of marine boundary layer cloud properties from the ARM CAP-MBL campaign and two MODIS cloud products, J. Geophys. Res., 122, doi:10.1002/2016JD025763.
- Alexandrov, M. D., et al. (2016), Polarized view of supercooled liquid water clouds, Remote Sensing of Environment, 181, 96-110, doi:10.1016/j.rse.2016.04.002.
- Ding, J., et al. (2016), Ice cloud backscatter study and comparison with CALIPSO and MODIS satellite data Jiachen Ding,1 Ping Yang,1,* Robert E. Holz,2 Steven Platnick,3 Kerry G. Meyer,3,4 Mark, Optics Express, 24, 620-636, doi:10.1364/OE.24.000620.
- Hioki, S., et al. (2016), Degree of ice particle surface roughness inferred from polarimetric observations, Atmos. Chem. Phys., 16, 7545-7558, doi:10.5194/acp-16-7545-2016.
- Meyer, K. G., Y. Yang, and S. Platnick (2016), Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC), Atmos. Meas. Tech., 9, 1785-1797, doi:10.5194/amt-9-1785-2016.
- Meyer, K. G., et al. (2016), Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 µm water vapor absorption band, Atmos. Meas. Tech., 9, 1743-1753, doi:10.5194/amt-9-1743-2016.
- Miller, D., et al. (2016), The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds, J. Geophys. Res., 121, 4122-4141, doi:10.1002/2015JD024322.
- Werner, F., et al. (2016), Marine boundary layer cloud property retrievals from high-resolution ASTER observations: case studies and comparison with Terra MODIS, Atmos. Meas. Tech., 9, 5869-5894, doi:10.5194/amt-9-5869-2016.
- Yuan, T., et al. (2016), Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation, Geophys. Res. Lett., 43, doi:10.1002/2016GL067679.
- Zhang, Z., et al. (2016), A framework based on 2-D Taylor expansion for quantifying the impacts of subpixel reflectance variance and covariance on cloud optical thickness and effective radius retrievals based on the bispectral method, J. Geophys. Res., 121, 7007-7025, doi:10.1002/2016JD024837.
- Alexandrov, M. D., et al. (2015), Liquid water cloud properties during the Polarimeter Definition Experiment (PODEX), Remote Sensing of Environment, 169, 20-36, doi:10.1016/j.rse.2015.07.029.
- Cho, H., et al. (2015), Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans, J. Geophys. Res., 120, doi:10.1002/2015JD023161.
- Meyer, K., S. Platnick, and Z. Zhang (2015), Simultaneously inferring above-cloud absorbing aerosol optical thickness and underlying liquid phase cloud optical and microphysical properties using MODIS, J. Geophys. Res., 120, 5524-5547, doi:10.1002/2015JD023128.
- Hamann, U., et al. (2014), Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms, Atmos. Meas. Tech., 7, 2839-2867, doi:10.5194/amt-7-2839-2014.
- Zhang, Z., et al. (2014), A novel method for estimating shortwave direct radiative effect of above-cloud aerosols using CALIOP and MODIS data, Atmos. Meas. Tech., 7, 1777-1789, doi:10.5194/amt-7-1777-2014.
- Cole, B. H., et al. (2013), Comparison of PARASOL Observations with Polarized Reflectances Simulated Using Different Ice Habit Mixtures, J. Appl. Meteor. Climat., 52, 186-196, doi:10.1175/JAMC-D-12-097.1.
- King, M. D., et al. (2013), Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites, IEEE Trans. Geosci. Remote Sens., 51, 3826-3852, doi:10.1109/TGRS.2012.2227333.
- Stubenrauch, C. J., et al. (2013), Assessment Of Global Cloud Datasets From Satellites: Project and Database Initiated by the GEWEX Radiation Panel, Bull. Am. Meteorol. Soc., 1031-1049, doi:10.1175/BAMS-D-12-00117.1.
- Wang, C., et al. (2013), A fast radiative transfer model for visible through shortwave infrared spectral reflectances in clear and cloudy atmospheres, J. Quant. Spectrosc. Radiat. Transfer, 116, 122-131, doi:10.1016/j.jqsrt.2012.10.012.
- Wang, C., et al. (2013), Retrieval of Ice Cloud Properties from AIRS and MODIS Observations Based on a Fast High-Spectral-Resolution Radiative Transfer Model, J. Appl. Meteor. Climat., 52, 710-726, doi:10.1175/JAMC-D-12-020.1.
- Zhang, Z., et al. (2012), Effects of cloud horizontal inhomogeneity and drizzle on remote sensing of cloud droplet effective radius: Case studies based on large-eddy simulations, J. Geophys. Res., 117, D19208, doi:10.1029/2012JD017655.
- Jiang, J., et al. (2011), Influence of convection and aerosol pollution on ice cloud particle effective radius, Atmos. Chem. Phys., 11, 457-463, doi:10.5194/acp-11-457-2011.
- Wang, C., et al. (2011), Retrieval of Ice Cloud Optical Thickness and Effective Particle Size Using a Fast Infrared Radiative Transfer Model, J. Appl. Meteor. Climat., 50, 2283-2297, doi:10.1175/JAMC-D-11-067.1.
- Coddington, O. M., et al. (2010), Examining the impact of overlying aerosols on the retrieval of cloud optical properties from passive remote sensing, J. Geophys. Res., 115, D10211, doi:10.1029/2009JD012829.
- Di Girolamo, L., L. Liang, and S. Platnick (2010), A global view of one‐dimensional solar radiative transfer through oceanic water clouds, Geophys. Res. Lett., 37, L18809, doi:10.1029/2010GL044094.
- Hong, G., et al. (2010), Detecting opaque and nonopaque tropical upper tropospheric ice clouds: A trispectral technique based on the MODIS 8–12 micron window bands, J. Geophys. Res., 115, D20214, doi:10.1029/2010JD014004.
- Joiner, J., et al. (2010), Detection of multi-layer and vertically-extended clouds using A-train sensors, Atmos. Meas. Tech., 3, 233-247.
- Kindel, B. C., et al. (2010), Observations and modeling of ice cloud shortwave spectral albedo during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J18, doi:10.1029/2009JD013127.
- King, M. D., et al. (2010), Remote sensing of radiative and microphysical properties of clouds during TC4: Results from MAS, MASTER, MODIS, and MISR, J. Geophys. Res., 115, D00J07, doi:10.1029/2009JD013277.
- Riedi, J. C., et al. (2010), Cloud thermodynamic phase inferred from merged POLDER and MODIS data, Atmos. Chem. Phys., 10, 11851-11865, doi:10.5194/acp-10-11851-2010.
- Schmidt, S., et al. (2010), Apparent absorption of solar spectral irradiance in heterogeneous ice clouds, J. Geophys. Res., 115, D00J22, doi:10.1029/2009JD013124.
- Toon, B., et al. (2010), Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J04, doi:10.1029/2009JD013073.
- Wind, G., et al. (2010), Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band, J. Appl. Meteor. Climat., 49, 2315-2333, doi:10.1175/2010JAMC2364.1.
- Jensen, E., et al. (2009), On the importance of small ice crystals in tropical anvil cirrus, Atmos. Chem. Phys. Discuss., 9, 5321-5370.
- Jiang, J., et al. (2009), Aerosol-CO relationship and aerosol effect on ice cloud particle size: Analyses from Aura Microwave Limb Sounder and Aqua Moderate Resolution Imaging Spectroradiometer observations, J. Geophys. Res., 114, D20207, doi:10.1029/2009JD012421.
- Joiner, J., et al. (2009), Accurate satellite-derived estimates of the tropospheric ozone impact on the global radiation budget, Atmos. Chem. Phys., 9, 4447-4465, doi:10.5194/acp-9-4447-2009.
- Liang, L., L. Di Girolamo, and S. Platnick (2009), View-angle consistency in reflectance, optical thickness and spherical albedo of marine water-clouds over the northeastern Pacific through MISR-MODIS fusion, Geophys. Res. Lett., 36, L09811, doi:10.1029/2008GL037124.
- Liu, H., et al. (2009), Sensitivity of photolysis frequencies and key tropospheric oxidants in a global model to cloud vertical distributions and optical properties, J. Geophys. Res., 114, D10305, doi:10.1029/2008JD011503.
- Vasilkov, A. P., et al. (2009), Impact of tropospheric nitrogen dioxide on the regional radiation budget, Atmos. Chem. Phys., 9, 6389-6400, doi:10.5194/acp-9-6389-2009.
- Waliser, D. E., et al. (2009), Cloud ice: A climate model challenge with signs and expectations of progress, J. Geophys. Res., 114, D00A21, doi:10.1029/2008JD010015.
- Zhang, Z., et al. (2009), Influence of ice particle model on satellite ice cloud retrieval: lessons learned from MODIS and POLDER cloud product comparison, Atmos. Chem. Phys., 9, 7115-7129, doi:10.5194/acp-9-7115-2009.
- Jiang, J., et al. (2008), Clean and polluted clouds: Relationships among pollution, ice clouds, and precipitation in South America, Geophys. Res. Lett., 35, L14804, doi:10.1029/2008GL034631.
- Moody, E. G., et al. (2008), MODIS-Derived Spatially Complete Surface Albedo Products: Spatial and Temporal Pixel Distribution and Zonal Averages, J. Appl. Meteor. Climat., 47, 2879-2894, doi:10.1175/2008JAMC1795.1.
- Chiriaco, M., et al. (2007), Comparison of CALIPSO-Like, LaRC, and MODIS Retrievals of Ice-Cloud Properties over SIRTA in France and Florida during CRYSTAL-FACE, J. Appl. Meteor. Climat., 46, 249-272, doi:10.1175/JAM2435.1.
- Hong, G., et al. (2007), High cloud properties from three years of MODIS Terra and Aqua collection 4 data over the tropics, J. Appl. Meteor. Climat., 46, 1840-1856, doi:10.1175/2007JAMC1583.1.
- Moody, E. G., et al. (2007), Northern Hemisphere five-year average (2000–2004) spectral albedos of surfaces in the presence of snow: Statistics computed from Terra MODIS land products, Remote Sensing of Environment, 111, 337-345, doi:10.1016/j.rse.2007.03.026.
- Yang, P., et al. (2007), Differences Between Collection 4 and 5 MODIS Ice Cloud Optical/Microphysical Products and Their Impact on Radiative Forcing Simulations, IEEE Trans. Geosci. Remote Sens., 45, 2886-2899, doi:10.1109/TGRS.2007.898276.
- Lee, J., et al. (2006), The Influence of Thermodynamic Phase on the Retrieval of Mixed-Phase Cloud Microphysical and Optical Properties in the Visible and Near-Infrared Region, IEEE Geosci. Remote Sens. Lett., 3, 287-291, doi:10.1109/LGRS.2006.864374.
- Liu, H., et al. (2006), Radiative effect of clouds on tropospheric chemistry in a global three-dimensional chemical transport model, J. Geophys. Res., 111, D20303, doi:10.1029/2005JD006403.
- Marshak, A., et al. (2006), Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizes, J. Geophys. Res., 111, D09207, doi:10.1029/2005JD006686.
- Baum, B. A., et al. (2005), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part II: Narrowband Models, J. Appl. Meteor., 44, 1896-1911, doi:10.1175/JAM2309.1.
- Mace, J., et al. (2005), Evaluation of Cirrus Cloud Properties Derived from MODIS Data Using Cloud Properties Derived from Ground-Based Observations Collected at the ARM SGP Site, J. Appl. Meteor., 44, 221-240.
- Moody, E. G., et al. (2005), Spatially Complete Global Spectral Surface Albedos: Value-Added Datasets Derived From Terra MODIS Land Products, IEEE Trans. Geosci. Remote Sens., 43, 144-158, doi:10.1109/TGRS.2004.838359.
- King, M. D., et al. (2004), Remote Sensing of Liquid Water and Ice Cloud Optical Thickness and Effective Radius in the Arctic: Application of Airborne Multispectral MAS Data, J. Atmos. Oceanic Technol., 21, 857-875.
- McFarquhar, G., et al. (2004), Trade wind cumuli statistics in clean and polluted air over the Indian Ocean from in situ and remote sensing measurements, Geophys. Res. Lett., 31, L21105, doi:10.1029/2004GL020412.
- Gatebe, C., et al. (2003), Airborne spectral measurements of surface–atmosphere anisotropy for several surfaces and ecosystems over southern Africa, J. Geophys. Res., 108, 8489, doi:10.1029/2002JD002397.
- King, M. D., et al. (2003), Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS, IEEE Trans. Geosci. Remote Sens., 41, 442-458, doi:10.1109/TGRS.2002.808226.
- King, M. D., et al. (2003), Remote sensing of smoke, land, and clouds from the NASA ER-2 during SAFARI 2000, J. Geophys. Res., 108, 8502, doi:10.1029/2002JD003207.
- Swap, B., et al. (2003), Africa burning: A thematic analysis of the Southern African Regional Science Initiative (SAFARI 2000), J. Geophys. Res., 108, 8465, doi:10.1029/2003JD003747.
- Swap, B., et al. (2002), The Southern African Regional Science Initiative (SAFARI 2000): Overview of the dry season field campaign, S. African J. Sci., 98, 125-130.
- Durkee, P. A., et al. (2000), Composite ship track characteristics, J. Atmos. Sci., 57, 2542-2553.
- King, M. D., et al. (1996), Airborne Scanning Spectrometer for Remote Sensing of Cloud, Aerosol, Water Vapor, and Surface Properties, J. Atmos. Oceanic Technol., 13, 777-794, doi:10.1175/1520-0426(1996)013.
- Valero, F., et al. (1993), Airborne Brightness Temperature Measurements of the Polar Winter Troposphere as Part of the Airborne Stratospheric Experiment II and the Effect of Brightness Temperature Variations on the Diabatic Heating in the Lower Stratosphere, Geophys. Res. Lett., 20, 2575-2578.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.