The ORACLES website will be undergoing a major upgrade beginning Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Please plan to complete any critical activities before or after this time.
Snorre Stamnes
Organization:
NASA Langley Research Center
Business Address:
Hampton, VA 23681
United StatesFirst Author Publications:
Co-Authored Publications:
- Li, X., et al. (2024), Process Modeling of Aerosol‐Cloud Interaction in Summertime Precipitating Shallow Cumulus Over the Western North Atlantic, J. Geophys. Res., 129, e2023JD039489, doi:10.1029/2023JD039489.
- Schlosser, J., et al. (2024), Maximizing the Volume of Collocated Data from Two Coordinated Suborbital Platforms, J. Atmos. Oceanic Technol., 41, 189-201, doi:10.1175/JTECH-D-23-0001.1.
- Siu, L. W., et al. (2024), Retrievals of aerosol optical depth over the western North Atlantic Ocean during ACTIVATE, Atmos. Meas. Tech., 17, 2739-2759, doi:10.5194/amt-17-2739-2024.
- Nied, J., et al. (2023), A cloud detection neural network for above-aircraft clouds using airborne cameras, Frontiers in Remote Sensing, 4, 10.3389/frsen.2023.1118745, doi:10.3389/frsen.2023.1118745.
- Sorooshian, A., et al. (2023), Spatially coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: the NASA ACTIVATE dataset, Earth Syst. Sci. Data, 15, 3419-3472, doi:10.5194/essd-15-3419-2023.
- Chemyakin, E., et al. (2022), Efficient single-scattering look-up table for lidar and polarimeter water cloud studies, / Optics Letters, 48, 13-16, doi:10.1364/OL.474282.
- Schlosser, J., et al. (2022), Polarimeter + Lidar–Derived Aerosol Particle Number Concentration, Front. Remote Sens., 3, 885332, doi:10.3389/frsen.2022.885332.
- van Diedenhoven, B., et al. (2022), Remote sensing of aerosol water fraction, dry size distribution and soluble fraction using multi-angle, multi-spectral polarimetry, Atmos. Meas. Tech., 15, 7411-7434, doi:10.5194/amt-15-7411-2022.
- Xu, F., et al. (2021), A Combined Lidar-Polarimeter Inversion Approach for Aerosol Remote Sensing Over Ocean, Front. Remote Sens., 2, 1-24, doi:10.3389/frsen.2021.620871.
- Dubovik, O., et al. (2019), Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives, J. Quant. Spectrosc. Radiat. Transfer, 224, 474-511, doi:10.1016/j.jqsrt.2018.11.024.
- Jamet, C., et al. (2019), Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry, Front. Mar. Sci., 6, 251, doi:10.3389/fmars.2019.00251.
- Pistone, K., et al. (2019), Intercomparison of biomass burning aerosol optical properties from in situ and remote-sensing instruments in ORACLES-2016, Atmos. Chem. Phys., 19, 9181-9208, doi:10.5194/acp-19-9181-2019.
- Sun, W., et al. (2019), Technical note: A simple method for retrieval of dust aerosol optical depth with polarized reflectance over oceans, Atmos. Chem. Phys., 19, 15583-15586, doi:10.5194/acp-19-15583-2019.
- Alexandrov, M. D., et al. (2018), Retrievals of cloud droplet size from the research scanning polarimeter data: T Validation using in situ measurements, Remote Sensing of Environment, 210, 76-95, doi:10.1016/j.rse.2018.03.005.
- Burton, S., et al. (2016), Information content and sensitivity of the 3β+ 2α lidar measurement system for aerosol microphysical retrievals, Atmos. Meas. Tech., 9, 5555-5574, doi:10.5194/amt-9-5555-2016.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.