Organization:
National Center for Atmospheric Research
Business Address:
Boulder, CO 80305
United StatesFirst Author Publications:
Co-Authored Publications:
- Pan, L. L., et al. (2024), East Asian summer monsoon delivers large abundances of very-short-lived organic chlorine substances to the lower stratosphere, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2318716121.
- Roozitalab, B., et al. (2024), Measurements and Modeling of the Interhemispheric Differences of Atmospheric Chlorinated Very Short-Lived Substances, J. Geophys. Res., doi:10.1029/2023JD039518.
- Krysztofiak, G., et al. (2023), N2O Temporal Variability from the Middle Troposphere to the Middle Stratosphere Based on Airborne and Balloon-Borne Observations during the Period 1987–2018, Atmosphere, 14, 585, doi:10.3390/atmos14030585.
- Li, Q., et al. (2022), Reactive halogens increase the global methane lifetime and radiative forcing in the 21st century, Nature, doi:10.1038/s41467-022-30456-8.
- Park, M., et al. (2021), Fate of Pollution Emitted During the 2015 Indonesian Fire Season, J. Geophys. Res., 126, e2020JD033474, doi:10.1029/2020JD033474.
- Wilka, C., et al. (2021), Atmospheric Chemistry Signatures of an Equatorially Symmetric Matsuno–Gill Circulation Pattern, J. Atmos. Sci., 78, 107-116, doi:10.1175/JAS-D-20-0025.1.
- Zambri, B., D. Kinnison, and S. Solomon (2021), Subpolar Activation of Halogen Heterogeneous Chemistry in Austral Spring, Geophys. Res. Lett..
- Koenig, T., et al. (2020), Quantitative detection of iodine in the stratosphere, Proc. Natl. Acad. Sci., 117, doi:10.1073/pnas.1916828117.
- Nicely, J., et al. (2020), A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1, Atmos. Chem. Phys., 20, 1341-1361, doi:10.5194/acp-20-1341-2020.
- Asher, L., et al. (2019), Novel approaches to improve estimates of short-lived halocarbon emissions during summer from the Southern Ocean using airborne observations, Atmos. Chem. Phys., 19, 14071-14090, doi:10.5194/acp-19-14071-2019.
- Tilmes, S., et al. (2019), Climate Forcing and Trends of Organic Aerosols in the Community Earth System Model (CESM2), J. Adv. Modeling Earth Syst., 11, 4323-4351, doi:10.1029/2019MS001827.
- Wang, S., et al. (2019), Ocean Biogeochemistry Control on the Marine Emissions of Brominated Very Short‐Lived Ozone‐Depleting Substances: A Machine‐Learning Approach, J. Geophys. Res., 124, doi:10.1029/2019JD031288.
- Yang, H., et al. (2019), Large-scale transport into the Arctic: the roles of the midlatitude jet and the Hadley Cell, Atmos. Chem. Phys., 19, 5511-5528, doi:10.5194/acp-19-5511-2019.
- Orbe, C., et al. (2018), Large-scale tropospheric transport in the Chemistry–Climate Model Initiative (CCMI) simulations, Atmos. Chem. Phys., 18, 7217-7235, doi:10.5194/acp-18-7217-2018.
- Liang, Q., et al. (2017), Deriving Global OH Abundance and Atmospheric Lifetimes for Long-Lived Gases: A Search for CH3CCl3 Alternatives, J. Geophys. Res., 122, 11,914-11,933, doi:10.1002/2017JD026926.
- Park, M., et al. (2017), Variability of Stratospheric Reactive Nitrogen and Ozone Related to the QBO, J. Geophys. Res., 122, doi:10.1002/2017JD027061.
- Anderson, D., et al. (2016), A pervasive role for biomass burning in tropical high ozone/low water structures, Nature, doi:10.1038/ncomms10267.
- Jackman, C. H., et al. (2016), Atmospheric changes caused by galactic cosmic rays over the period 1960–2010, Atmos. Chem. Phys., 16, 5853-5866, doi:10.5194/acp-16-5853-2016.
- Orbe, C., et al. (2016), Tropospheric transport differences between models using the same large-scale meteorological fields, Geophys. Res. Lett., 44, doi:10.1002/2016GL071339.
- Jensen, E., et al. (2015), Investigation of the transport processes controlling the geographic distribution of carbon monoxide at the tropical tropopause, J. Geophys. Res., 120, 2067-2086, doi:10.1002/2014JD022661.
- Millán, L., et al. (2015), Stratospheric and mesospheric HO2 observations from the Aura Microwave Limb Sounder, Atmos. Chem. Phys., 15, 2889-2902, doi:10.5194/acp-15-2889-2015.
- Prados-Roman, C., et al. (2015), A negative feedback between anthropogenic ozone pollution and enhanced ocean emissions of iodine, Atmos. Chem. Phys., 15, 2215-2224, doi:10.5194/acp-15-2215-2015.
- Prados-Roman, C., et al. (2015), Iodine oxide in the global marine boundary layer, Atmos. Chem. Phys., 15, 583-593, doi:10.5194/acp-15-583-2015.
- Chipperfield, M., et al. (2014), Multimodel estimates of atmospheric lifetimes of long-lived ozone-depleting substances: Present and future, J. Geophys. Res., 119, 2555-2573, doi:10.1002/2013JD021097.
- Fernandez, R. P., et al. (2014), Bromine partitioning in the tropical tropopause layer: implications for stratospheric injection, Atmos. Chem. Phys., 14, 13391-13410, doi:10.5194/acp-14-13391-2014.
- Saiz-Lopez, A., et al. (2014), Iodine chemistry in the troposphere and its effect on ozone, Atmos. Chem. Phys., 14, 13119-13143, doi:10.5194/acp-14-13119-2014.
- Brakebusch, M., et al. (2013), Evaluation of Whole Atmosphere Community Climate Model simulations of ozone during Arctic winter 2004–2005, J. Geophys. Res., 118, 2673-2688, doi:10.1002/jgrd.50226.
- Park, M., et al. (2013), Hydrocarbons in the upper troposphere and lower stratosphere observed from ACE-FTS and comparisons with WACCM, J. Geophys. Res., 118, 1-17, doi:10.1029/2012JD018327.
- Choi, S., et al. (2012), Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC, Atmos. Chem. Phys., 12, 1255-1285, doi:10.5194/acp-12-1255-2012.
- Millán, L., et al. (2012), New Aura Microwave Limb Sounder observations of BrO and implications for Bry, Atmos. Meas. Tech., 5, 1741-1751, doi:10.5194/amt-5-1741-2012.
- Ordóñez, C., et al. (2012), Bromine and iodine chemistry in a global chemistry-climate model: description and evaluation of very short-lived oceanic sources, Atmos. Chem. Phys., 12, 1423-1447, doi:10.5194/acp-12-1423-2012.
- Saiz-Lopez, A., et al. (2012), Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere, Atmos. Chem. Phys., 12, 3939-3949, doi:10.5194/acp-12-3939-2012.
- Tilmes, S., et al. (2012), Impact of very short-lived halogens on stratospheric ozone abundance and UV radiation in a geo-engineered atmosphere, Atmos. Chem. Phys., 12, 10945-10955, doi:10.5194/acp-12-10945-2012.
- Strahan, S., et al. (2011), Using transport diagnostics to understand chemistry climate model ozone simulations, J. Geophys. Res., 116, D17302, doi:10.1029/2010JD015360.
- Salawitch, R., et al. (2010), A new interpretation of total column BrO during Arctic spring, Geophys. Res. Lett., 37, L21805, doi:10.1029/2010GL043798.
- Alexander, M. J., et al. (2008), Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations, J. Geophys. Res., 113, D15S18, doi:10.1029/2007JD008807.
- Gille, J., et al. (2008), High Resolution Dynamics Limb Sounder: Experiment overview, recovery, and validation of initial temperature data, J. Geophys. Res., 113, D16S43, doi:10.1029/2007JD008824.
- Nardi, B., et al. (2008), Initial validation of ozone measurements from the High Resolution Dynamics Limb Sounder, J. Geophys. Res., 113, D16S36, doi:10.1029/2007JD008837.
- Baldwin, M., et al. (2007), Climate-Ozone Connections, Scientific Assesment of Ozone Depletion, 1.
- Massie, S., et al. (2007), High Resolution Dynamics Limb Sounder observations of polar stratospheric clouds and subvisible cirrus, J. Geophys. Res., 112, D24S31, doi:10.1029/2007JD008788.
- Gettelman, A., et al. (2004), Impact of monsoon circulations on the upper troposphere and lower stratosphere, J. Geophys. Res., 109, D22101, doi:10.1029/2004JD004878.
- Weisenstein, D., et al. (2004), Separating Chemistry and Transport Effects in 2-D Models, J. Geophys. Res., 109, D18310, doi:10.1029/2004JD004744.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.