Organization
NASA Langley Research Center
Email
Business Address
MS/475
Hampton, VA 23681
United States
First Author Publications
-
Winker, D. (2024), 25 Years of CALIPSO, Isbn, 978-3-031-53618-2, in Space-based Lidar Remote Se, doi:10.1007/978-3-031-53618-2.
-
Winker, D., et al. (2024), A Level 3 monthly gridded ice cloud dataset derived from 12 years of CALIOP measurements, Earth Syst. Sci. Data, 16, 2831-2855, doi:10.5194/essd-16-2831-2024.
-
Winker, D., et al. (2017), Observational Constraints on Cloud Feedbacks: The Role of Active Satellite Sensors, Surv. Geophys., 38, 1483-1508, doi:10.1007/s10712-017-9452-0.
-
Winker, D., et al. (2013), The global 3-D distribution of tropospheric aerosols as characterized by CALIOP, Atmos. Chem. Phys., 13, 3345-3361, doi:10.5194/acp-13-3345-2013.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
de Guélis, ., et al. (2024), There are amendments to this paper OPEN Space lidar observations constrain longwave cloud feedback, Nature, doi:10.1038/s41598-018-34943-1.
-
Oikawa, E., et al. (2024), An Evaluation of the Shortwave Direct Aerosol Radiative Forcing Using CALIOP and MODIS Observations, J. Geophys. Res., 123, doi:10.1002/2017JD027247.
-
Stephens, G., et al. (2024), Cloudsat And Calipso Within The A-Train: Ten Years of Actively Observing the Earth System, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-16-0324.1.
-
Stubenrauch, C., et al. (2024), Lessons Learned from the Updated GEWEX Cloud Assessment Database Claudia J. Stubenrauch1 · Stefan Kinne2 · Giulio Mandorli1 · William B. Rossow3 · David M. Winker4 · Steven A. Ackerman5 · Helene Chepfer1 · Larry Di Girolamo6 · Anne Garnier4,7 · Andrew Hei, Surv. Geophys., doi:10.1007/s10712-024-09824-0.
-
Tackett, J.L., et al. (2023), The CALIPSO version 4.5 stratospheric aerosol subtyping algorithm, Atmos. Meas. Tech., 16, 745-768, doi:10.5194/amt-16-745-2023.
-
Scott, B., et al. (2021), Aerosol, Cloud, Convection, and Precipitation (ACCP) Science & Applications, tech., report.
-
Thorsen, T., et al. (2021), Uncertainty in Observational Estimates of the Aerosol Direct Radiative Effect and Forcing, J. Climate, 34, 195-214, doi:10.1175/JCLI-D-19-1009.1.
-
Lyapustin, A., et al. (2020), MAIAC Thermal Technique for Smoke Injection Height From MODIS, IEEE Geosci. Remote Sens. Lett., 17, 730-734, doi:10.1109/LGRS.2019.2936332.
-
Thorsen, T., et al. (2020), Aerosol Direct Radiative Effect Sensitivity Analysis, J. Climate, 33, 6119-6139, doi:10.1175/JCLI-D-19-0669.1.
-
Yu, H., et al. (2019), Estimates of African Dust Deposition Along the Trans‐ Atlantic Transit Using the Decadelong Record of Aerosol Measurements from CALIOP, MODIS, MISR, and IASI, J. Geophys. Res., 124, 7975-7996, doi:10.1029/2019JD030574.
-
Sayer, A.M., et al. (2018), Validation of SOAR VIIRS Over-Water Aerosol Retrievals and Context Within the Global Satellite Aerosol Data Record, J. Geophys. Res., 123, doi:10.1029/2018JD029465.
-
Tackett, J.L., et al. (2018), CALIPSO lidar level 3 aerosol profile product: version 3 algorithm design, Atmos. Meas. Tech., 11, 4129-4152, doi:10.5194/amt-11-4129-2018.
-
Ham, S., et al. (2017), Cloud occurrences and cloud radiative effects (CREs) from CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat radar-lidar (RL) products, J. Geophys. Res., 122, doi:10.1002/2017JD026725.
-
Rajapakshe, C., et al. (2017), Seasonally transported aerosol layers over southeast Atlantic are closer to underlying clouds than previously reported, Geophys. Res. Lett., 44, 5818-5825, doi:10.1002/2017GL073559.
-
Koffi, B., et al. (2016), Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results, J. Geophys. Res., 121, 7254-7283, doi:10.1002/2015JD024639.
-
van Donkelaar, ., et al. (2016), Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors, Environ. Sci. Technol., 50, 3762-3772, doi:10.1021/acs.est.5b05833.
-
Liu, Z., et al. (2015), Evaluation of CALIOP 532 nm aerosol optical depth over opaque water clouds, Atmos. Chem. Phys., 15, 1265-1288, doi:10.5194/acp-15-1265-2015.
-
Yu, H., et al. (2015), Quantification of Trans-Atlantic Dust Transport from Seven-year (2007-2013) Record of CALIPSO Lidar Measurements, " Remote Sens. Environ, 159, 232-249, doi:10.1016/j.rse.2014.12.010.
-
Yu, H., et al. (2015), Quantification of trans-Atlantic dust transport from seven-year (2007–2013) record of CALIPSO lidar measurements, Remote Sensing of Environment, 159, 232-249, doi:10.1016/j.rse.2014.12.010.
-
Yu, H., et al. (2015), The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations, Geophys. Res. Lett., 42, 1984-1991, doi:10.1002/2015GL063040.
-
HEYMSFIELD, A.J., et al. (2014), Relationships between Ice Water Content and Volume Extinction Coefficient from In Situ Observations for Temperatures from 08 to 2868C: Implications for Spaceborne Lidar Retrievals*, J. Appl. Meteor. Climat., 53, 479-505, doi:10.1175/JAMC-D-13-087.1.
-
Sun-Mack, S., et al. (2014), Regional Apparent Boundary Layer Lapse Rates Determined from CALIPSO and MODIS Data for Cloud-Height Determination, J. Appl. Meteor. Climat., 53, 990-1011, doi:10.1175/JAMC-D-13-081.1.
-
Zeng, S., et al. (2014), Study of global cloud droplet number concentration with A-Train satellites, Atmos. Chem. Phys., 14, 7125-7134, doi:10.5194/acp-14-7125-2014.
-
Campbell, J.R., et al. (2013), Characterizing the vertical profile of aerosol particle extinction and linear depolarization over Southeast Asia and the Maritime Continent: The 2007–2009 view from CALIOP, Atmos. Res., 122, 520-543, doi:10.1016/j.atmosres.2012.05.007.
-
Liu, Z., et al. (2013), Transpacific transport and evolution of the optical properties of Asian dust, J. Quant. Spectrosc. Radiat. Transfer, 116, 24-33, doi:10.1016/j.jqsrt.2012.11.011.
-
Stubenrauch, C.J., et al. (2013), Assessment Of Global Cloud Datasets From Satellites: Project and Database Initiated by the GEWEX Radiation Panel, Bull. Am. Meteorol. Soc., 1031-1049, doi:10.1175/BAMS-D-12-00117.1.
-
Jean-Paul, J.J., et al. (2013), An Advanced System to Monitor the 3D Structure of Diffuse Volcanic Ash Clouds, J. Appl. Meteor. Climat., 52, 2125-2138, doi:10.1175/JAMC-D-12-0279.1.
-
Avery, M.A., et al. (2012), Cloud ice water content retrieved from the CALIOP space-based lidar, Geophys. Res. Lett., 39, L05808, doi:10.1029/2011GL050545.
-
Koffi, B., et al. (2012), Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results, J. Geophys. Res., 117, D10201, doi:10.1029/2011JD016858.
-
Leahy, L., et al. (2012), On the nature and extent of optically thin marine low clouds, J. Geophys. Res., 117, D22201, doi:10.1029/2012JD017929.
-
Schuster, G., et al. (2012), Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust, Atmos. Chem. Phys., 12, 7431-7452, doi:10.5194/acp-12-7431-2012.
-
Sun, W., et al. (2012), For the depolarization of linearly polarized light by smoke particles, J. Quant. Spectrosc. Radiat. Transfer, doi:10.1016/j.jqsrt.2012.03.031.
-
Kato, S., et al. (2011), Improvements of top‐of‐atmosphere and surface irradiance computations with CALIPSO‐, CloudSat‐, and MODIS‐derived cloud and aerosol properties, J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.
-
Liu, ., et al. (2011), Effective lidar ratios of dense dust layers over North Africa derived from the CALIOP measurements, J. Quant. Spectrosc. Radiat. Transfer, 112, 204-213, doi:10.1016/j.jqsrt.2010.05.006.
-
Sessions, W.R., et al. (2011), An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS, Atmos. Chem. Phys., 11, 5719-5744, doi:10.5194/acp-11-5719-2011.
-
Chepfer, ., et al. (2010), The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP), J. Geophys. Res., 115, D00H16, doi:10.1029/2009JD012251.
-
Massie, S.T., et al. (2010), HIRDLS and CALIPSO observations of tropical cirrus, J. Geophys. Res., 115, D00H11, doi:10.1029/2009JD012100.
-
Yu, H., et al. (2010), Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations, J. Geophys. Res., 115, D00H30, doi:10.1029/2009JD013364.
-
Bi, L., et al. (2009), Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 mm, J. Geophys. Res., 114, D00H08, doi:10.1029/2009JD011759.
-
Hu, Y., et al. (2009), CALIPSO/CALIOP Cloud Phase Discrimination Algorithm, J. Atmos. Oceanic Technol., 26, 2293-2309, doi:10.1175/2009JTECHA1280.1.
-
Mace, G.G., et al. (2009), A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data, J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.
-
Saunders, W., et al. (2009), Where is the best site on Earth? Domes A, B, C, and F, and Ridges A and B, Publ. Astronom. Soc. Pac., 121, 976-992.
-
Cho, H.-M., et al. (2008), Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements, Opt. Express, 16, 3931-3948.
-
Hu, Y., et al. (2008), Sea surface wind speed estimation from space-based lidar measurements, Atmos. Chem. Phys., 8, 3593-3601, doi:10.5194/acp-8-3593-2008.
-
Liu, D., et al. (2008), A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements, J. Geophys. Res., 113, D16214, doi:10.1029/2007JD009776.
-
Liu, ., et al. (2008), Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations, Atmos. Chem. Phys., 8, 5045-5060, doi:10.5194/acp-8-5045-2008.
-
Wang, Z., et al. (2008), Association of Antarctic polar stratospheric cloud formation on tropospheric cloud systems, Geophys. Res. Lett., 35, L13806, doi:10.1029/2008GL034209.
-
Yang, P., et al. (2008), Effect of Cavities on the Optical Properties of Bullet Rosettes: Implications for Active and Passive Remote Sensing of Ice Cloud Properties, J. Appl. Meteor. Climat., 47, 2311-2330, doi:10.1175/2008JAMC1905.1.
-
Huang, ., et al. (2007), Summer dust aerosols detected from CALIPSO over the Tibetan Plateau, Geophys. Res. Lett., 34, L18805, doi:10.1029/2007GL029938.
-
McGill, M., et al. (2007), Airborne validation of spatial properties measured by the CALIPSO lidar, J. Geophys. Res., 112, D20201, doi:10.1029/2007JD008768.
-
Noel, V., et al. (2007), Extinction coefficients retrieved in deep tropical ice clouds from lidar observations using a CALIPSO-like algorithm compared to in-situ measurements from the cloud integrating nephelometer during CRYSTAL-FACE, Atmos. Chem. Phys., 7, 1415-1422, doi:10.5194/acp-7-1415-2007.
-
Anderson, T.L., et al. (2005), An “A-Train” Strategy for Quantifying Direct Climate Forcing by Anthropogenic Aerosols, Bull. Am. Meteorol. Soc., 1795, doi:10.1175/BAMS-86-12-1795.
-
McGill, M., et al. (2004), Combined lidar-radar remote sensing: Initial results from CRYSTAL-FACE, J. Geophys. Res., 109, D07203, doi:10.1029/2003JD004030.
-
Redemann, J., et al. (2001), On the feasibility of studying shortwave aerosol radiative forcing of climate using dual-wavelength lidar-derived aerosol backscatter data, ‘Advances in Laser Remote Sensing’, A. Dabas, C. Loth, J. Pelon (eds., 2001, 159-162.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.