Associated content: 

Rosemount Icing Detector

The RICE is a magnetostrictive oscillation probe with a sensing cylinder 6.35 mm in diameter and 2.54 cm in length. Ice buildup on the sensing cylinder causes the frequency of oscillation to change, which can be related to the rate of ice accretion and hence the cloud liquid water content (LWC). When approximately 0.5 mm of ice has accumulated, a heater melts the ice, which is shed into the air stream. The heater cycle is approximately 5 s, and the cylinder normally requires an additional 5–10 s to cool down to a temperature where it can begin accreting ice again.

Point(s) of Contact: 

Thermal-Dissociation Laser Induced Fluorescence

The UC Berkeley thermal-dissociation laser-induced fluorescence (TD- LIF) instrument detects NO2 directly and detects total peroxynitrates (ΣPNs ≡ PAN + PPN +N2O5 + HNO4. . .), total alkyl- and other thermally stable organic nitrates (ΣANs), and HNO3 following thermal dissociation of these NOy species to NO2. The sensitivity for NO2 at 1 Hz is 30 pptv (S/N=2) with a slope uncertainty of 5%. The uncertainties for the dissociated species are 10% for ΣPNs and 15% for ΣANs and HNO3.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

NCAR NOxyO3

The NCAR NOxyO3 instrument is a 4-channel chemiluminescence instrument for the measurement of NO, NO2, NOy, and O3. NOx (NO and NO2) is critical to fast chemical processes controlling radical chemistry and O3 production. Total reactive nitrogen (NOy = NO + NO2 + HNO3 + PANs + other organic nitrates + HO2NO2 + HONO + NO3 + 2*N2O5 + particulate NO3- + …) is a useful tracer for characterizing air masses since it has a tendency to be conserved during airmass aging, as NOx is oxidized to other NOy species.

NOx (NO and NO2), NOy (total reactive nitrogen), and O3 are measured using the NCAR 4-channel chemiluminescence instrument, previously flown on the NASA WB-57F and the NCAR C130. NO is measured via addition of reagent O3 to the sample flow to generate the chemiluminescent reaction producing excited NO2, which is detected by photon counting with a dry-ice cooled photomultiplier tube. NO2 is measured as NO following photolytic conversion of NO2, with a time response of about 3 sec due to the residence time in the photolysis cell. NO is measured with an identical time response due to use of a matching volume. NOy is measured via Au-catalyzed conversion of reactive nitrogen species to NO, in the presence of CO, with a time response of slightly better than 1 sec. O3 is measured using the same chemiluminescent reaction but with the addition of reagent NO to the sample flow. Time response for the ozone measurement is slightly better than 1 s.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Differential Absorption Lidar

The NASA Langley Airborne Differential Absorption Lidar (DIAL) system uses four lasers to make DIAL O3 profile measurements in the ultraviolet (UV) simultaneously with aerosol profile measurements in the visible and IR. Recent changes incorporate an additional laser and modifications to the receiver system that will provide aerosol backscatter, extinction, and depolarization profile measurements at three wavelengths (UV, visible, and NIR). For SEAC4RS, the DIAL instrument will include for the first time aerosol and cloud measurements implementing the High Spectral Resolution Lidar (HSRL) technique [Hair, 2008]. The modifications include integrating an additional 3-wavelength (355 nm, 532 nm, 1064 nm) narrowband laser and the receiver to make the following measurements; depolarization at all three wavelengths, aerosol/cloud backscatter and extinction at 532 nm via the HSRL technique, and aerosol/cloud backscatter at the 355 and 1064 nm via the standard backscatter lidar technique. Integration of the aerosol extinction profile at 532nm above and below the aircraft also provides aerosol optical depth (AOD) along the aircraft flight track.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Atmospheric Vertical Observations of CO2 in the Earth's Troposphere

The NASA Langley CO2 sampling system (AVOCET) has an extensive measurement heritage in tropospheric field campaigns, delivering high reliability over 3400 flight hours (452 science flights) and is recognized within the CO2 community as a benchmark for evaluating newly evolving remote CO2. This instrument was adapted by the investigators for airborne sampling and has been successfully deployed aboard NASA research aircraft beginning with the PEM-West A mission in 1992, and more recently during the 2016 KORUS-AQ, 2017 ACSENDS/ABoVE, and 2019 FIREX-AQ missions. The newest iteration of the technique as of 2017 has at its core a modified LI-COR model 7000 non-dispersive infrared spectrometer (NDIR). The basic instrument is small (13 x 25 x 37 cm) and composed of dual 11.9 cm^3 sample/reference cells, a feedback stabilized infrared source, 500 Hz chopper, thermoelectrically-cooled solid state PbSe detector, and a narrow band (150 nm) interference filter centered on the 4.26 μm CO2 absorption band. Using synchronous signal detection techniques, it operates by sensing the difference in light absorption between the continuously flowing sample and reference gases occupying each side of the dual absorption cell. Thus, by selecting a reference gas of approximately the same concentration as background air (~405 ppm), minute fluctuations in atmospheric concentration can be quantified with high precision. Calbrations are peformed frequently during flight using WMO-traceable standards from NOAA ESRL. Precisions of ≤ 0.1 ppm (±1σ) for 1 Hz sampling rates are typical for our present airborne CO2 system when operated at 600 torr sample pressure.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Airborne Second Generation Precipitation Radar

The APR-2 is a dual-frequency (13 GHz & 35 GHz), Doppler, dual-polarization radar system. It has a downward looking antenna that performs cross track scans, covering a swath that is +/- 25 to each side of the aircraft path. Additional features include: simultaneous dual-frequency, matched beam operation at 13.4 and 35.6 GHz (same as GPM Dual-Frequency Precipitation Radar), simultaneous measurement of both like- and cross-polarized signals at both frequencies, Doppler operation, and real-time pulse compression (calibrated reflectivity data can be produced for large areas in the field during flight, if necessary).

Instrument Type: 
Point(s) of Contact: 

Precipitation Imaging Probe

This optical spectrometer measures the size and shape of particles from 100 to 6200 µm in diameter.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Cloud Aerosol and Precipitation Spectrometer

Measures concentration and records images of cloud particles from approximately 50-1600 microns in diameter with a resolution of 25 microns per pixel. Measures cloud droplet and aerosol concentrations within the size range of 0.5-50 microns.

The three DMT instruments included in the CAPS are the Cloud Imaging Probe (CIP), the Cloud and Aerosol Spectrometer (CAS), and the Hotwire Liquid Water Content Sensor (Hotwire LWC).

The CIP, which measures larger particles, operates as follows. Shadow images of particles passing through a collimated laser beam are projected onto a linear array of 64 photodetectors. The presence of a particle is registered by a change in the light level on each diode. The registered changes in the photodetectors are stored at a rate consistent with probe velocity and the instrument’s size resolution. Particle images are reconstructed from individual “slices,” where a slice is the state of the 64-element linear array at a given moment in time. A slice must be stored each time interval that the particle advances through the beam a distance equal to the resolution of the probe. Optional grayscale imaging gives three levels of shadow recording on each photodetector, allowing more detailed information on the particles.

The CAS, which measures smaller particles, relies on light-scattering rather than imaging techniques. Particles scatter light from an incident laser, and collecting optics guide the light scattered in the 4° to 12° range into a forward-sizing photodetector. This light is measured and used to infer particle size. Backscatter optics also measure light in the 168° to 176° range, which allows determination of the real component of a particle’s refractive index for spherical particles.

The Hotwire LWC instrument estimates liquid water content using a heated sensing coil. The system maintains the coil at a constant temperature, usually 125 °C, and measures the power necessary to maintain this temperature. More power is needed to maintain the temperature as droplets evaporate on the coil surface and cool the surface and surrounding air. Hence, this power reading can be used to estimate LWC. Both the LWC design and the optional PADS software contain features to ensure the LWC reading is not affected by conductive heat loss.

Point(s) of Contact: 

Pages

Subscribe to RSS - TC4