Organization
National Center for Atmospheric Research
Email
Business Phone
Work
(303) 497-1491
Mobile
(303) 956-0295
Fax
(303) 497-1400
Business Address
National Center for Atmospheric Research
3090 Center Green Dr.
Atmospheric Chemistry Observations and Modeling Lab.
Boulder, CO 80301
United States
Website
First Author Publications
-
Emmons, L.K., et al. (2015), The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations, Atmos. Chem. Phys., 15, 6721-6744, doi:10.5194/acp-15-6721-2015.
-
Emmons, L.K., et al. (2010), Impact of Mexico City emissions on regional air quality from MOZART-4 simulations, Atmos. Chem. Phys., 10, 6195-6212, doi:10.5194/acp-10-6195-2010.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Roozitalab, B., et al. (2024), Measurements and Modeling of the Interhemispheric Differences of Atmospheric Chlorinated Very Short-Lived Substances, J. Geophys. Res., doi:10.1029/2023JD039518.
-
Gaubert, B., et al. (2023), Global Scale Inversions from MOPITT CO and MODIS AOD, Remote Sens., 15, 4813, doi:10.3390/rs15194813.
-
Guo, H., et al. (2023), Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected, Atmos. Chem. Phys., 23, 99-117, doi:10.5194/acp-23-99-2023.
-
Tang, W., et al. (2023), Application of the Multi-Scale Infrastructure for Chemistry and Aerosols version 0 (MUSICAv0) for air quality research in Africa, Geosci. Model. Dev., doi:10.5194/gmd-16-6001-2023.
-
Bourgeois, I.E.V., et al. (2022), Large contribution of biomass burning emissions to ozone throughout the global remote troposphere, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2109628118.
-
Schwantes, R.H., et al. (2022), Evaluating the Impact of Chemical Complexity and Horizontal Resolution on Tropospheric Ozone Over the Conterminous US With a Global Variable Resolution Chemistry Model, J. Adv. Modeling Earth Syst., 14, e2021MS002889, doi:10.1029/2021MS002889.
-
Tang, W., et al. (2022), Effects of Fire Diurnal Variation and Plume Rise on U.S. Air Quality During FIREX-AQ and WE-CAN Based on the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0), J. Geophys. Res., 127, e2022JD036650, doi:10.1029/2022JD036650.
-
zhang, X., et al. (2022), Probing isoprene photochemistry at atmospherically relevant nitric oxide levels, Chem, 8, 2022, doi:10.1016/j.chempr.2022.08.003.
-
Buchholz, R.R., et al. (2021), Air pollution trends measured from Terra: CO and AOD over industrial, fire-prone, and background regions, Remote Sensing of Environment, 256, 112275, doi:10.1016/j.rse.2020.112275.
-
Guo, H., et al. (2021), Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements, Atmos. Chem. Phys., 21, 13729-13746, doi:10.5194/acp-21-13729-2021.
-
Jo, D.S., et al. (2021), Future changes in isoprene-epoxydiol-derived secondary organic aerosol (IEPOX SOA) under the Shared Socioeconomic Pathways: the importance of physicochemical dependency, Atmos. Chem. Phys., 21, 3395-3425, doi:10.5194/acp-21-3395-2021.
-
Lin, H., et al. (2021), Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models, Geosci. Model. Dev., 14, 5487-5506, doi:10.5194/gmd-14-5487-2021.
-
Park, M.N., et al. (2021), Fate of Pollution Emitted During the 2015 Indonesian Fire Season, J. Geophys. Res., 126, e2020JD033474, doi:10.1029/2020JD033474.
-
Park, R., et al. (2021), Multi-model intercomparisons of air quality simulations for the KORUS-AQ campaign, Elementa: Science of the Anthropocene, 9, doi:10.1525/elementa.2021.00139.
-
Tang, W., et al. (2021), Assessing sub-grid variability within satellite pixels over urban regions using airborne mapping spectrometer measurements, Atmos. Meas. Tech., 14, 4639-4655, doi:10.5194/amt-14-4639-2021.
-
Wang, S., et al. (2021), Chemical Tomography in a Fresh Wildland Fire Plume: A Large Eddy Simulation (LES) Study, J. Geophys. Res..
-
Ye, X., et al. (2021), Evaluation and intercomparison of wildfire smoke forecasts from multiple modeling systems for the 2019 Williams Flats fire, Atmos. Chem. Phys., 21, 14427-14469, doi:10.5194/acp-21-14427-2021.
-
Ye, X., et al. (2021), Evaluation and intercomparison of wildfire smoke forecasts from multiple modeling systems for the 2019 Williams Flats fire, Atmos. Chem. Phys., doi:10.5194/acp-2021-223.
-
Gaubert, B., et al. (2020), Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ, Atmos. Chem. Phys., 20, 14617-14647, doi:10.5194/acp-20-14617-2020.
-
Saide Peralta, P.E., et al. (2020), Understanding and improving model representation of aerosol optical properties for a Chinese haze event measured during KORUS-AQ, Atmos. Chem. Phys., 20, 6455-6478, doi:10.5194/acp-20-6455-2020.
-
Schwantes, R.H., et al. (2020), Comprehensive isoprene and terpene gas-phase chemistry improves simulated surface ozone in the southeastern US, Atmos. Chem. Phys., 20, 3739-3776, doi:10.5194/acp-20-3739-2020.
-
Tang, W., et al. (2020), Assessing Measurements of Pollution in the Troposphere (MOPITT) carbon monoxide retrievals over urban versus non-urban regions, Atmos. Meas. Tech., 13, 1337-1356, doi:10.5194/amt-13-1337-2020.
-
Wang, S., et al. (2020), Global Atmospheric Budget of Acetone: Air‐Sea Exchange and the Contribution to Hydroxyl Radicals, J. Geophys. Res., 125, e2020JD032553, doi:10.1029/2020JD032553.
-
Tang, W., et al. (2019), Source Contributions to Carbon Monoxide Concentrations During KORUS‐AQ Based on CAM‐chem Model Applications, J. Geophys. Res..
-
Tilmes, ., et al. (2019), Climate Forcing and Trends of Organic Aerosols in the Community Earth System Model (CESM2), J. Adv. Modeling Earth Syst., 11, 4323-4351, doi:10.1029/2019MS001827.
-
Wang, S., et al. (2019), Atmospheric Acetaldehyde: Importance of Air‐Sea Exchange and a Missing Source in the Remote Troposphere, Geophys. Res. Lett., 46, doi:10.1029/2019GL082034.
-
Wang, S., et al. (2019), Ocean Biogeochemistry Control on the Marine Emissions of Brominated Very Short‐Lived Ozone‐Depleting Substances: A Machine‐Learning Approach, J. Geophys. Res., 124, doi:10.1029/2019JD031288.
-
Buchholz, R.R., et al. (2018), Links Between Carbon Monoxide and Climate Indices for the Southern Hemisphere and Tropical Fire Regions, J. Geophys. Res., 123, 9786-9800, doi:10.1029/2018JD028438.
-
Dong, X., et al. (2018), Long-range transport impacts on surface aerosol concentrations and the contributions to haze events in China: an HTAP2 multi-model study, Atmos. Chem. Phys., 18, 15581-15600, doi:10.5194/acp-18-15581-2018.
-
Liang, C., et al. (2018), HTAP2 multi-model estimates of premature human mortality due to intercontinental transport of air pollution and emission sectors, Atmos. Chem. Phys., 18, 10497-10520, doi:10.5194/acp-18-10497-2018.
-
Tan, J., et al. (2018), Source contributions to sulfur and nitrogen deposition – an HTAP II multi-model study on hemispheric transport, Atmos. Chem. Phys., 18, 12223-12240, doi:10.5194/acp-18-12223-2018.
-
Gaubert, B., et al. (2017), Chemical Feedback From Decreasing Carbon Monoxide Emissions, Geophys. Res. Lett., 44, https, doi:.org/10.1002/.
-
Gaubert, B., et al. (2016), Toward a chemical reanalysis in a coupled chemistry-climate model: An evaluation of MOPITT CO assimilation and its impact on tropospheric composition, J. Geophys. Res., 121, 7310-7343, doi:10.1002/2016JD024863.
-
Stjern, C.W., et al. (2016), Global and regional radiative forcing from 20 % reductions in BC, OC and SO4 – an HTAP2 multi-model study, Atmos. Chem. Phys., 16, 13579-13599, doi:10.5194/acp-16-13579-2016.
-
Arnold, S.R., et al. (2015), Biomass burning influence on high-latitude tropospheric ozone and reactive nitrogen in summer, Atmos. Chem. Phys., 15, 6047-6068, doi:10.5194/acp-15-6047-2015.
-
Barré, J., et al. (2015), Assessing the impacts of assimilating IASI and MOPITT CO retrievals using CESM-CAM-chem and DART, J. Geophys. Res., 120, 501-10, doi:10.1002/2015JD023467.
-
Monks, S.A., et al. (2015), Multi-model study of chemical and physical controls on transport of anthropogenic and biomass burning pollution to the Arctic, Atmos. Chem. Phys., 15, 3575-3603, doi:10.5194/acp-15-3575-2015.
-
Park, M.N., et al. (2013), Hydrocarbons in the upper troposphere and lower stratosphere observed from ACE-FTS and comparisons with WACCM, J. Geophys. Res., 118, 1-17, doi:10.1029/2012JD018327.
-
Apel, E.C., et al. (2012), Impact of the deep convection of isoprene and other reactive trace species on radicals and ozone in the upper troposphere, Atmos. Chem. Phys., 12, 1135-1150, doi:10.5194/acp-12-1135-2012.
-
Drori, R., et al. (2012), Attributing and quantifying carbon monoxide sources affecting the Eastern Mediterranean: a combined satellite, modelling, and synoptic analysis study, Atmos. Chem. Phys., 12, 1067-1082, doi:10.5194/acp-12-1067-2012.
-
Wespes, ., et al. (2012), Analysis of ozone and nitric acid in spring and summer Arctic pollution using aircraft, ground-based, satellite observations and MOZART-4 model: source attribution and partitioning, Atmos. Chem. Phys., 12, 237-259, doi:10.5194/acp-12-237-2012.
-
Pfister, G., et al. (2011), CO source contribution analysis for California during ARCTAS-CARB., Atmos. Chem. Phys., 11, 7515-7532, doi:10.5194/acp-11-7515-2011.
-
Tilmes, ., et al. (2011), Source contributions to Northern Hemisphere CO and black carbon during spring and summer 2008 from POLARCAT and START08/preHIPPO observations and MOZART-4, Atmos. Chem. Phys. Discuss., 11, 5935-5983, doi:10.5194/acpd-11-5935-2011.
-
Adhikary, B., et al. (2010), A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign, Atmos. Chem. Phys., 10, 2091-2115, doi:10.5194/acp-10-2091-2010.
-
Adhikary, B., et al. (2010), Trans-Pacific transport and evolution of aerosols and trace gases from Asia during the INTEX-B field campaign, Atmos. Chem. Phys. Discuss., 10, 2091-2115.
-
Jacob, D.J., et al. (2010), The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results, Atmos. Chem. Phys., 10, 5191-5212, doi:10.5194/acp-10-5191-2010.
-
Singh, H.B., et al. (2010), Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions, Atmos. Environ., 44, 4553-4564, doi:10.1016/j.atmosenv.2010.08.026.
-
Crounse, J.D., et al. (2009), Biomass burning and urban air pollution over the Central Mexican Plateau, Atmos. Chem. Phys., 9, 4929-4944, doi:10.5194/acp-9-4929-2009.
-
Dunlea, E.J., et al. (2009), Evolution of Asian aerosols during transpacific transport in INTEX-B, Atmos. Chem. Phys., 9, 7257-7287, doi:10.5194/acp-9-7257-2009.
-
Park, M.N., et al. (2009), Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART), J. Geophys. Res., 114, D08303, doi:10.1029/2008JD010621.
-
Clerbaux, C., et al. (2008), Carbon monoxide pollution from cities and urban areas observed by the Terra/MOPITT mission, Geophys. Res. Lett., 35, L03817, doi:10.1029/2007GL032300.
-
DeCarlo, P.F., et al. (2008), Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign, Atmos. Chem. Phys., 8, 4027-4048, doi:10.5194/acp-8-4027-2008.
-
Park, M.N., et al. (2008), Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data, Atmos. Chem. Phys., 8, 757-764, doi:10.5194/acp-8-757-2008.
-
Apel, E.C., et al. (2007), Observations of volatile organic compounds downwind of Mexico City during MIRAGE-MEX, Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract A41F-02.
-
Horowitz, L.W., et al. (2007), Observational constraints on the chemistry of isoprene nitrates over the eastern United States, J. Geophys. Res., 112, D12S08, doi:10.1029/2006JD007747.
-
Singh, H.B., et al. (2007), Reactive nitrogen distribution and partitioning in the North American troposphere and lowermost stratosphere, J. Geophys. Res., 112, D12S04, doi:10.1029/2006JD007664.
-
Turquety, ., et al. (2007), Inventory of boreal fire emissions for North America in 2004: Importance of peat burning and pyroconvective injection, J. Geophys. Res., 112, D12S03, doi:10.1029/2006JD007281.
-
Edwards, D.P., et al. (2006), Satellite-observed pollution from Southern Hemisphere biomass burning, J. Geophys. Res., 111, D14312, doi:10.1029/2005JD006655.
-
Shindell, D., et al. (2006), Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes, J. Geophys. Res., 111, D19306, doi:10.1029/2006JD007100.
-
Shindell, D., and L.K. Emmons (2005), Inferring carbon monoxide pollution changes from space-based observations, J. Geophys. Res., 110, D23303, doi:10.1029/2005JD006132.
-
Ridley, B., et al. (2004), Florida thunderstorms: A faucet of reactive nitrogen to the upper troposphere, J. Geophys. Res., 109, D17305, doi:10.1029/2004JD004769.
-
Heald, C.L., et al. (2003), Asian outflow and trans-Pacific transport of carbon monoxide and ozone pollution: An integrated satellite, aircraft, and model perspective, J. Geophys. Res., 108, 4804, doi:10.1029/2003JD003507.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.