Characterization of MJO-related upper tropospheric hydrological processes using MLS

Schwartz, M.J., D.E. Waliser, B. Tian, D.L. Wu, J.H. Jiang, and B. Read (2008), Characterization of MJO-related upper tropospheric hydrological processes using MLS, Geophys. Res. Lett., 35, L08812, doi:10.1029/2008GL033675.
Abstract

This study quantifies Madden-Julian Oscillation (MJO)related hydrological variability in the upper troposphere/ lower stratosphere (UT/LS) using Aura Microwave Limb Sounder (MLS) cloud ice water content (IWC) and water vapor (H2O). In a composite of six boreal-winter MJO events, the UT/LS IWC anomaly is strongly positively correlated with the convection (TRMM rainfall) anomaly. IWC anomalies range from ±2 mg/m3 at 215 hPa to ±0.08 mg/m3 at 100 hPa. The UT/LS H2O anomaly has an eastward-tilting structure similar to the previous-documented temperature structure, but the H2O maximum lags the temperature maximum by about a week. The H2O anomaly is positively correlated with the convection anomaly in the UT (261 hPa) and LS (68 hPa) but negatively correlated with the convection anomaly near the tropopause (100 hPa). This analysis provides a multi-parameter construct useful in validating and improving the parameterization of convection, clouds and cloud microphysics in MJO modeling.

PDF of Publication
Download from publisher's website
Research Program
Modeling Analysis and Prediction Program (MAP)
Atmospheric Composition
Energy & Water Cycle Program (EWCP)
Climate Variability and Change Program
Atmospheric Dynamics and Precipitation Program (ADP)
Mission
Aura MLS
Funding Sources
AIRS, MLS

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.