Warning message

Member access has been temporarily disabled. Please try again later.
The ATom website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

Scattering of Gaussian beams by disordered particulate media

Mishchenko, M., and J. M. Dlugach (2016), Scattering of Gaussian beams by disordered particulate media, J. Quant. Spectrosc. Radiat. Transfer, 183, 85-89, doi:10.1016/j.jqsrt.2016.04.016.
Abstract: 

A frequently observed characteristic of electromagnetic scattering by a disordered particulate medium is the absence of pronounced speckles in angular patterns of the scattered light. It is known that such diffuse speckle-free scattering patterns can be caused by averaging over randomly changing particle positions and/or over a finite spectral range. To get further insight into the possible physical causes of the absence of speckles, we use the numerically exact superposition T-matrix solver of the Maxwell equations and analyze the scattering of plane-wave and Gaussian beams by representative multi-sphere groups. We show that phase and amplitude variations across an incident Gaussian beam do not serve to extinguish the pronounced speckle pattern typical of plane-wave illumination of a fixed multi-particle group. Averaging over random particle positions and/or over a finite spectral range is still required to generate the classical diffuse speckle-free regime.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)