Organization:
NASA Goddard Space Flight Center
Business Address:
Goddard Space Flight Center
Greenbelt, MD 20771
United StatesFirst Author Publications:
- Krotkov, N., et al. (2022), Day–Night Monitoring of Volcanic SO2 and Ash Clouds for Aviation Avoidance at Northern Polar Latitudes, jkirkendall@esri.com * Correspondence, Nickolay.a.krotkov@n, 4003, doi:10.3390/rs13194003.
- Krotkov, N., et al. (2017), The version 3 OMI NO2 standard product, Atmos. Meas. Tech., 10, 3133-3149, doi:10.5194/amt-10-3133-2017.
- Krotkov, N., et al. (2016), Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015, Atmos. Chem. Phys., 16, 4605-4629, doi:10.5194/acp-16-4605-2016.
- Krotkov, N., et al. (2010), Dispersion and lifetime of the SO2 cloud from the August 2008 Kasatochi eruption, J. Geophys. Res., 115, D00L20, doi:10.1029/2010JD013984.
- Krotkov, N., et al. (2008), Validation of SO2 retrievals from the Ozone Monitoring Instrument over NE China, J. Geophys. Res., 113, D16S40, doi:10.1029/2007JD008818.
- Krotkov, N., et al. (2006), Band Residual Difference Algorithm for Retrieval of SO2 From the Aura Ozone Monitoring Instrument (OMI), IEEE Trans. Geosci. Remote Sens., 44, 1259-1266, doi:10.1109/TGRS.2005.861932.
Co-Authored Publications:
- Carn, S. A., et al. (2022), Out of the blue: Volcanic SO2 emissions during the 2021-2022 eruptions of Hunga Tonga—Hunga Ha’apai (Tonga), Front. Earth Sci., 10, doi:10.3389/feart.2022.976962.
- Choi, S., et al. (2020), Assessment of NO2 observations during DISCOVER-AQ and KORUS-AQ field campaigns, Atmos. Meas. Tech., 13, 2523-2546, doi:10.5194/amt-13-2523-2020.
- Chong, H., et al. (2020), High-resolution mapping of SO2 using airborne observations from the T GeoTASO instrument during the KORUS-AQ field study: PCA-based vertical column retrievals ⁎, Remote Sensing of Environment, 241, 111725, doi:10.1016/j.rse.2020.111725.
- Fioletov, V., et al. (2020), Anthropogenic and volcanic point source SO2 emissions derived from TROPOMI on board Sentinel-5 Precursor: first results, Atmos. Chem. Phys., 20, 5591-5607, doi:10.5194/acp-20-5591-2020.
- Kharol, S. K., et al. (2020), Ceramic industry at Morbi as a large source of SO2 emissions in India, Atmos. Environ., 223, 117243, doi:10.1016/j.atmosenv.2019.117243.
- Liu, F., et al. (2020), A methodology to constrain carbon dioxide emissions from coal-fired power plants using satellite observations of co-emitted nitrogen dioxide, Atmos. Chem. Phys., 20, 99-116, doi:10.5194/acp-20-99-2020.
- Torres, O., et al. (2020), Stratospheric Injection of Massive Smoke Plume From Canadian Boreal Fires in 2017 as Seen by DSCOVR‐EPIC, CALIOP, and OMPS‐LP Observations, J. Geophys. Res., 125, e2020JD032579, doi:10.1029/2020JD032579.
- Abad, G. G., et al. (2019), Five decades observing Earth’s atmospheric trace gases using ultraviolet and visible backscatter solar radiation from space, J. Quant. Spectrosc. Radiat. Transfer, in press, doi:10.1016/j.jqsrt.2019.04.030 (submitted).
- Abad, G. G., et al. (2019), Five decades observing Earth’s atmospheric trace gases using ultraviolet and visible backscatter solar radiation from space, J. Quant. Spectrosc. Radiat. Transfer, doi:10.1016/j.jqsrt.2019.04.030.
- Adams, C., et al. (2019), Satellite-derived emissions of carbon monoxide, ammonia, and nitrogen dioxide from the 2016 Horse River wildfire in the Fort McMurray area, Atmos. Chem. Phys., 19, 2577-2599, doi:10.5194/acp-19-2577-2019.
- Allen, D., et al. (2019), Lightning NOx Production in the Tropics as Determined Using OMI NO2 Retrieval and WWLLN Stroke Data, J. Geophys. Res., 124, 13,498-13,518, doi:10.1029/2018JD029824.
- Fedkin, N. M., et al. (2019), Linking improvements in sulfur dioxide emissions to decreasing sulfate wet T deposition by combining satellite and surface observations with trajectory analysis, Atmos. Environ., 199, 210-223, doi:10.1016/j.atmosenv.2018.11.039.
- Goldberg, D. L., et al. (2019), Exploiting OMI NO2 satellite observations to infer fossil-fuel CO2 emissions from U.S. megacities☆, Science of the Total Environment, 695, 133805, doi:10.1016/j.scitotenv.2019.133805.
- Griffin, D., et al. (2019), High-Resolution Mapping of Nitrogen Dioxide With TROPOMI: First Results and Validation Over the Canadian Oil Sands, Geophys. Res. Lett., 46, doi:10.1029/2018GL081095.
- He, H., et al. (2019), Chemical climatology of atmospheric pollutants in the eastern United States: T Seasonal/diurnal cycles and contrast under clear/cloudy conditions for remote sensing, Atmos. Environ., 206, 85-107, doi:10.1016/j.atmosenv.2019.03.003.
- Zhang, H., et al. (2019), Surface erythemal UV irradiance in the continental United States derived from ground-based and OMI observations: quality assessment, trend analysis and sampling issues, Atmos. Chem. Phys., 19, 2165-2181, doi:10.5194/acp-19-2165-2019.
- Carn, S. A., et al. (2018), First Observations of Volcanic Eruption Clouds From the L1 Earth-Sun Lagrange Point by DSCOVR/EPIC, Geophys. Res. Lett., 45, doi:10.1029/2018GL079808.
- Ialongo, I., et al. (2018), Application of satellite-based sulfur dioxide observations to support the cleantech sector: Detecting emission reduction from copper smelters ∗, Environmental Technology & Innovation, 12, 172-179, doi:10.1016/j.eti.2018.08.006.
- Lindfors, A. V., et al. (2018), The TROPOMI surface UV algorithm, Atmos. Meas. Tech., 11, 997-1008, doi:10.5194/amt-11-997-2018.
- Liu, F., et al. (2018), A new global anthropogenic SO2 emission inventory for the last decade: a mosaic of satellite-derived and bottom-up emissions, Atmos. Chem. Phys., 18, 16571-16586, doi:10.5194/acp-18-16571-2018.
- Marshak, A., et al. (2018), Earth Observations From Dscovr Epic Instrument, Bull. Am. Meteorol. Soc., 1829-1850, doi:10.1175/BAMS-D-17-0223.1.
- Vasilkov, A. P., et al. (2018), A cloud algorithm based on the O2-O2 477 nm absorption band featuring an advanced spectral fitting method and the use of surface geometry-dependent Lambertian-equivalent reflectivity, Atmos. Meas. Tech., 11, 4093-4107, doi:10.5194/amt-11-4093-2018.
- Lamsal, L. N., et al. (2017), High-resolution NO2 observations from the Airborne Compact Atmospheric Mapper: Retrieval and validation, J. Geophys. Res., 122, 1953-1970, doi:10.1002/2016JD025483.
- Li, C., et al. (2017), India is overtaking China as the world’s largest emitter of anthropogenic sulfur dioxide, Scientific Reports, 7, 14304, doi:10.1038/s41598-017-14639-8.
- Li, C., et al. (2017), New-generation NASA Aura Ozone Monitoring Instrument (OMI) volcanic SO2 dataset: algorithm description, initial results, and continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS), Atmos. Meas. Tech., 10, 445-458, doi:10.5194/amt-10-445-2017.
- Lorente, A., et al. (2017), Structural uncertainty in air mass factor calculation for NO2 and HCHO satellite retrievals, Atmos. Meas. Tech., 10, 759-782, doi:10.5194/amt-10-759-2017.
- Miles, G. M., et al. (2017), Retrieval of volcanic SO2 from HIRS/2 using optimal estimation, Atmos. Meas. Tech., 10, 2687-2702.
- Zhang, Y., et al. (2017), Continuation of long-term global SO2 pollution monitoring from OMI to OMPS, Atmos. Meas. Tech., 10, 1495-1509, doi:10.5194/amt-10-1495-2017.
- Zoogman, P., et al. (2017), Tropospheric emissions: Monitoring of pollution (TEMPO), J. Quant. Spectrosc. Radiat. Transfer, 186, 17-39, doi:10.1016/j.jqsrt.2016.05.008.
- Adams, C., et al. (2016), Limb–nadir matching using non-coincident NO2 observations: proof of concept and the OMI-minus-OSIRIS prototype product, Atmos. Meas. Tech., 9, 4103-4122, doi:10.5194/amt-9-4103-2016.
- Fioletov, V. E., et al. (2016), A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument, Atmos. Chem. Phys., 16, 11497-11519, doi:10.5194/acp-16-11497-2016.
- Ge, C., et al. (2016), Satellite-based global volcanic SO2 emissions and sulfate direct radiative forcing during 2005–2012, J. Geophys. Res., 121, 3446-3464, doi:10.1002/2015JD023134.
- He, H., et al. (2016), Response of SO2 and particulate air pollution to local and regional emission controls: A case study in Maryland, Earth’s Future, 4, 94-109, doi:10.1002/2015EF000330.
- Hughes, E. J., et al. (2016), Using CATS near-real-time lidar observations to monitor and constrain volcanic sulfur dioxide (SO2) forecasts, Geophys. Res. Lett., 43, 11,089-11,097, doi:10.1002/2016GL070119.
- Ialongo, I., et al. (2016), Comparison of OMI NO2 observations and their seasonal and weekly cycles with ground-based measurements in Helsinki, Atmos. Meas. Tech., 9, 5203-5212, doi:10.5194/amt-9-5203-2016.
- Li, C., et al. (2016), Satellite observation of pollutant emissions from gas flaring activities near the Arctic, Atmos. Environ., 133, 1-11, doi:10.1016/j.atmosenv.2016.03.019.
- McLinden, C. A., et al. (2016), A Decade of Change in NO2 and SO2 over the Canadian Oil Sands As Seen from Space, Environ. Sci. Technol., 50, 331-337, doi:10.1021/acs.est.5b04985.
- McLinden, C. A., et al. (2016), Space-based detection of missing sulfur dioxide sources of global air pollution, Nature Geoscience, 9, 496, doi:10.1038/NGEO2724.
- Mok, J., et al. (2016), Impacts of atmospheric brown carbon on surface UV and ozone in the Amazon Basin, Sci. Rep., 6, 36940, doi:10.1038/srep36940.
- Pickering, K. E., et al. (2016), Estimates of lightning NOx production based on OMI NO2 observations over the Gulf of Mexico, J. Geophys. Res., 121, 8668-8691, doi:10.1002/2015JD024179.
- Carn, S. A., et al. (2015), Extending the long-term record of volcanic SO2 emissions with the Ozone Mapping and Profiler Suite nadir mapper, Geophys. Res. Lett., 42, 925-932, doi:10.1002/2014GL062437.
- Ialongo, I., et al. (2015), Validation of satellite SO2 observations in northern Finland during the Icelandic Holuhraun fissure eruption, Atmos. Meas. Tech., 8, 599-621, doi:10.5194/amtd-8-599-2015.
- Lamsal, L. N., et al. (2015), U.S. NO2 trends (2005e2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI), Atmos. Environ., 110, 130-143, doi:10.1016/j.atmosenv.2015.03.055.
- Li, C., et al. (2015), A new method for global retrievals of HCHO total columns from the Suomi National Polar-orbiting Partnership Ozone Mapping and Profiler Suite, Geophys. Res. Lett., 42, 2515-2522, doi:10.1002/2015GL063204.
- Marchenko, S. V., et al. (2015), Revising the slant column density retrieval of nitrogen dioxide observed by the Ozone Monitoring Instrument, J. Geophys. Res., 120, 5670-5692, doi:10.1002/2014JD022913.
- Choi, S., et al. (2014), First estimates of global free-tropospheric NO2 abundances derived using a cloud-slicing technique applied to satellite observations from the Aura Ozone Monitoring Instrument (OMI), Atmos. Chem. Phys., 14, 10565-10588, doi:10.5194/acp-14-10565-2014.
- Duncan, B., et al. (2014), Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid, Atmos. Environ., 94, 647-662, doi:10.1016/j.atmosenv.2014.05.061.
- Lamsal, L. N., et al. (2014), Evaluation of OMI operational standard NO2 column retrievals using in situ and surface-based NO2 observations, Atmos. Chem. Phys., 14, 11587-11609, doi:10.5194/acp-14-11587-2014.
- Carn, S. A., et al. (2013), Measuring global volcanic degassing with the Ozone Monitoring Instrument (OMI), From: Pyle, D. M., Mather, T. A. & Biggs, J. (eds) Remote Sensing of Volcanoes and Volcanic Processes: Integrating Observation and Modelling. Geological Society, London, Special Publications, 380, doi:10.1144/SP380.12.
- Fioletov, V. E., et al. (2013), Application of OMI, SCIAMACHY, and GOME-2 satellite SO2 retrievals for detection of large emission sources, J. Geophys. Res., 118, 11399-11418, doi:10.1002/jgrd.50826.
- Li, C., et al. (2013), A fast and sensitive new satellite SO2 retrieval algorithm based on principal component analysis: Application to the ozone monitoring instrument, Geophys. Res. Lett., 40, doi:10.1002/2013GL058134.
- Lu, Z., et al. (2013), Ozone Monitoring Instrument Observations of Interannual Increases in SO2 Emissions from Indian Coal-Fired Power Plants during 2005− 2012, Environ. Sci. Technol., 47, 13993-14000, doi:10.1021/es4039648.
- Streets, D., et al. (2013), Emissions estimation from satellite retrievals: A review of current capability, Atmos. Environ., 77, 1011-1042, doi:10.1016/j.atmosenv.2013.05.051.
- Wang, J., et al. (2013), Modeling of 2008 Kasatochi volcanic sulfate direct radiative forcing: assimilation of OMI SO2 plume height data and comparison with MODIS and CALIOP observations, Atmos. Chem. Phys., 13, 1895-1912, doi:10.5194/acp-13-1895-2013.
- McLinden, C. A., et al. (2012), Air quality over the Canadian oil sands: A first assessment using satellite observations, Geophys. Res. Lett., 39, L04804, doi:10.1029/2011GL050273.
- Carn, S. A., et al. (2011), In situ measurements of tropospheric volcanic plumes in Ecuador and Colombia during TC4, J. Geophys. Res., 116, D00J24, doi:10.1029/2010JD014718.
- Veefkind, J. P., et al. (2011), Global satellite analysis of the relation between aerosols and short-lived trace gases, Atmos. Chem. Phys., 11, 1255-1267, doi:10.5194/acp-11-1255-2011.
- Yang, K., et al. (2010), Direct retrieval of sulfur dioxide amount and altitude from spaceborne hyperspectral UV measurements: Theory and application, J. Geophys. Res., 115, D00L09, doi:10.1029/2010JD013982.
- Newman, P., et al. (2009), What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?, Atmos. Chem. Phys., 9, 2113-2128, doi:10.5194/acp-9-2113-2009.
- Witte, J. C., et al. (2009), Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics, Geophys. Res. Lett., 36, L17803, doi:10.1029/2009GL039236.
- Yang, K., et al. (2009), Estimating the altitude of volcanic sulfur dioxide plumes from space borne hyper-spectral UV measurements, Geophys. Res. Lett., 36, L10803, doi:10.1029/2009GL038025.
- Yang, K., et al. (2009), Improving retrieval of volcanic sulfur dioxide from backscattered UV satellite observations, Geophys. Res. Lett., 36, L03102, doi:10.1029/2008GL036036.
- Yang, K., et al. (2007), Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument: Comparison and limitations, J. Geophys. Res., 112, D24S43, doi:10.1029/2007JD008825.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.