The ATom website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.
David R. Doelling
Organization:
NASA Langley Research Center
First Author Publications:
- Doelling, D. R., et al. (2023), Daily monitoring algorithms to detect geostationary imager visible radiance anomalies, Terms of Use, doi:10.1117/1.JRS.16.014502.
- Doelling, D. R., et al. (2019), The Inter-Calibration of the DSCOVR EPIC Imager with Aqua-MODIS and NPP-VIIRS, doi:10.3390/rs11131609.
- Doelling, D. R., et al. (2019), Inter-Calibration of the OSIRIS-REx NavCams with Earth-Viewing Imagers, doi:10.3390/rs11222717.
- Doelling, D. R., et al. (2018), Geostationary Visible Imager Calibration for the CERES SYN1deg Edition 4 Product , Remote Sensing, 10, doi:10.3390/rs10020288.
- Doelling, D. R., et al. (2018), 1.17 - Vicarious Calibration and Validation, Comprehensive Remote Sensing, 475-518, doi:10.1016/B978-0-12-409548-9.10329-X.
- Doelling, D. R., et al. (2018), Geostationary Visible Imager Calibration for the CERES SYN1deg Edition 4 Product, Remote Sensing, 10, 288, doi:10.3390/rs10020288.
- Doelling, D. R., et al. (2018), Improvements to the Geostationary Visible Imager Ray-Matching Calibration Algorithm for CERES Edition 4 , J. Atmos. Oceanic Technol., 33, 2679-2698, doi:6 10.1175/JTECH-D-16-0113.1.
- Doelling, D. R., et al. (2016), A Consistent AVHRR Visible Calibration Record Based on Multiple Methods Applicable for the NOAA Degrading Orbits. Part II: Validation, J. Atmos. Oceanic Technol., 33, 2517-2534, doi:10.1175/JTECH-D-16-0042.1.
- Doelling, D. R., et al. (2016), Improvements to the Geostationary Visible Imager Ray-Matching Calibration Algorithm for CERES Edition 4, J. Atmos. Oceanic Technol., 33, 2679-2698, doi:10.1175/JTECH-D-16-0113.1.
- Doelling, D. R., et al. (2013), The Intercalibration of Geostationary Visible Imagers Using Operational Hyperspectral SCIAMACHY Radiances, IEEE Trans. Geosci. Remote Sens., 51, 1245-1254, doi:10.1109/TGRS.2012.2227760.
- Doelling, D. R., et al. (2013), The Characterization of Deep Convective Clouds as an Invariant Calibration Target and as a Visible Calibration Technique, IEEE Trans. Geosci. Remote Sens., 51, 1147-1159, doi:10.1109/TGRS.2012.2225066.
- Doelling, D. R., et al. (2012), Spectral Reflectance Corrections for Satellite Intercalibrations Using SCIAMACHY Data, IEEE Geosci. Remote Sens. Lett., 9, 119-123, doi:10.1109/LGRS.2011.2161751.
- Doelling, D. R., et al. (2011), Spectral reflectance corrections for satellite intercalibrations using SCIAMACHY data., Geosci. Remote Sens. Lett, 8, doi:10.1109/LGRS.2011.2161751.
Co-Authored Publications:
- Bhatt, R., et al. (2020), Response Versus Scan-Angle Assessment of MODIS Reflective Solar Bands in Collection 6.1 Calibration, IEEE Trans. Geosci. Remote Sens., 1-14, doi:10.1109/TGRS.2019.2946963.
- Sun-Mack, S., et al. (2019), Calibration Changes to Terra MODIS Collection-5 Radiances for CERES Edition 4 Cloud Retrievals, IEEE Trans. Geosci. Remote Sens., 1-17, doi:10.1109/TGRS.2018.2829902.
- Bhatt, R., et al. (2018), Consideration of Radiometric Quantization Error in Satellite Sensor Cross-Calibration, Remote Sensing, 10, 1131, doi:10.3390/rs10071131.
- Su, W., et al. (2018), Determining the Shortwave Radiative Flux From Earth Polychromatic Imaging Camera, J. Geophys. Res., 123, 11,479-11,491, doi:10.1029/2018JD029390.
- Bhatt, R., et al. (2017), Development of Seasonal BRDF Models to Extend the Use of Deep Convective Clouds as Invariant Targets for Satellite SWIR-Band Calibration, Remote Sensing, 9, 1061, doi:10.3390/rs9101061.
- Bhatt, R., et al. (2017), Characterizing response versus scan-angle for MODIS reflective solar bands using deep convective clouds, Journal of Applied Remote Sensing, 11, 16014, doi:10.1117/1.JRS.11.016014.
- Mu, Q., et al. (2017), Optimization of a Deep Convective Cloud Technique in Evaluating the Long-Term Radiometric Stability of MODIS Reflective Solar Bands, Remote Sensing, 9, 535, doi:10.3390/rs9060535.
- Bhatt, R., et al. (2016), A Consistent AVHRR Visible Calibration Record Based on Multiple Methods Applicable for the NOAA Degrading Orbits. Part I: Methodology, J. Atmos. Oceanic Technol., 33, 2499-2515, doi:10.1175/JTECH-D-16-0044.1.
- Scarino, B., et al. (2016), A Web-Based Tool for Calculating Spectral Band Difference Adjustment Factors Derived From SCIAMACHY Hyperspectral Data, IEEE Trans. Geosci. Remote Sens., 54, 2529-2542, doi:10.1109/TGRS.2015.2502904.
- Stanfield, R. E., et al. (2015), Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations. Part II: TOA Radiation Budget and CREs, J. Climate, 28, 1842-1864, doi:10.1175/JCLI-D-14-00249.1.
- Bhatt, R., et al. (2014), Desert-Based Absolute Calibration of Successive Geostationary Visible Sensors Using a Daily Exoatmospheric Radiance Model, IEEE Trans. Geosci. Remote Sens., 52, 3670-3682, doi:10.1109/TGRS.2013.2274594.
- Kato, S., et al. (2013), Surface Irradiances Consistent with CERES-Derived Top-of-Atmosphere Shortwave and Longwave Irradiances, J. Climate, 26, 2719-2740, doi:10.1175/JCLI-D-12-00436.1.
- Wielicki, B., et al. (2013), Achieving Climate Change Absolute Accuracy in Orbit, Bull. Am. Meteorol. Soc., 94, 1519-1539, doi:10.1175/BAMS-D-12-00149.1.
- Wu, A., et al. (2013), Characterization of Terra and Aqua MODIS VIS, NIR and SWIR Spectral Bands Calibration Stability, IEEE Trans. Geosci. Remote Sens., 51, 4330-4338, doi:10.1109/TGRS.2012.2226588.
- Hong, G., et al. (2012), Estimating effective particle size of tropical deep convective clouds with a look-up table method using satellite measurements of brightness temperature differences, J. Geophys. Res., 117, D06207, doi:10.1029/2011JD016652.
- Goldberg, M., et al. (2011), The Global Space-Based Inter-Calibration System, Bull. Am. Meteorol. Soc., 92, 467-475, doi:10.1175/2010BAMS2967.1.
- Smith, G. L. S., et al. (2011), Clouds and Earth Radiant Energy System (CERES), a review: Past, present and future, Advances in Space Research, 48, 254-263, doi:10.1016/j.asr.2011.03.009.
- Stackhouse, P., et al. (2010), Earth Radiation Budget at Top-of-Atmosphere, Bull. Am. Meteorol. Soc., 91, S41.
- Minnis, P., et al. (2008), Cloud Detection in Nonpolar Regions for CERES Using TRMM VIRS and Terra and Aqua MODIS Data, IEEE Trans. Geosci. Remote Sens., 46, 3857-3884, doi:10.1109/TGRS.2008.2001351.
- Minnis, P., et al. (2008), Assessment of the Visible Channel Calibrations of the VIRS on TRMM and MODIS on Aqua and Terra, J. Atmos. Oceanic Technol., 25, 385-400, doi:10.1175/2007JTECHA1021.1.
- Loeb, N., et al. (2007), Variability in global top-of-atmosphere shortwave radiation between 2000 and 2005, Geophys. Res. Lett., 34, L03704, doi:10.1029/2006GL028196.
- Mace, J., et al. (2006), Cloud radiative forcing at the Atmospheric Radiation Measurement Program Climate Research Facility: 1. Technique, validation, and comparison to satellite-derived diagnostic quantities, J. Geophys. Res., 111, D11S90, doi:10.1029/2005JD005921.
- Minnis, P., D. R. Doelling, and A. V. Gambheer (2004), Azimuthal anisotropy of longwave and infrared window radiances from the Clouds and the Earth’s Radiant Energy System on the Tropical Rainfall Measuring Mission and Terra satellites, J. Geophys. Res., 109, D08202, doi:10.1029/2003JD004471.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.