The CO2 tracer clock for the Tropical Tropopause Layer

The core information for this publication's citation.: 
Park, S., R. Jiménez, B. Daube, L. Pfister, T. J. Conway, E. Gottlieb, V. Chow, D. J. Curran, D. M. Matross, A. Bright, E. Atlas, T. P. Bui, R. Gao, C. Twohy, and S. C. Wofsy (2007), The CO2 tracer clock for the Tropical Tropopause Layer, Atmos. Chem. Phys., 7, 3989-4000, doi:10.5194/acp-7-3989-2007.
Abstract: 

Observations of CO2 were made in the upper troposphere and lower stratosphere in the deep tropics in order to determine the patterns of large-scale vertical transport and age of air in the Tropical Tropopause Layer (TTL). Flights aboard the NASA WB-57F aircraft over Central America and adjacent ocean areas took place in January and February, 2004 (Pre-AURA Validation Experiment, Pre-AVE) and 2006 (Costa Rice AVE, CR-AVE), and for the same flight dates of 2006, aboard the Proteus aircraft from the surface to 15 km over Darwin, Australia (Tropical Warm Pool International Cloud Experiment, TWP-ICE). The data demonstrate that the TTL is composed of two layers with distinctive features: (1) the lower TTL, 350–360 K (potential temperature(θ ); approximately 12–14 km), is subject to inputs of convective outflows, as indicated by layers of variable CO2 concentrations, with air parcels of zero age distributed throughout the layer; (2) the upper TTL, from θ=∼360 K to ∼390 K (14–18 km), ascends slowly and ages uniformly, as shown by a linear decline in CO2 mixing ratio tightly correlated with altitude, associated with increasing age. This division is confirmed by ensemble trajectory analysis. The CO2 concentration at the level of 360 K was 380.0(±0.2) ppmv, indistinguishable from surface site values in the Intertropical Convergence Zone (ITCZ) for the flight dates. Values declined with altitude to 379.2(±0.2) ppmv at 390 K, implying that air in the upper TTL monotonically ages while ascending. In combination with the winter slope of the CO2 seasonal cycle (+10.8±0.4 ppmv/yr), the vertical gradient of –0.78 (±0.09) ppmv gives a mean age of 26(±3) days for the air at 390 K and a mean ascent rate of 1.5(±0.3) mm s−1 . The TTL near 360 K in the Southern Hemisphere over Australia is very close in CO2 composition to the TTL in the Northern Hemisphere over Costa Rica, with strong contrasts emerging at lower altitudes (<360 K). Both Pre-AVE and CR-AVE CO2 observed unexpected input from deep convection over Amazônia deep into the TTL. The CO2 data confirm the operation of a highly accurate tracer clock in the TTL that provides a direct measure of the ascent rate of the TTL and of the age of air entering the stratosphere.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)
Mission: 
CR-AVE
TWP-ICE