Pressure broadening of oxygen by water

The core information for this publication's citation.: 
Drouin, B., V. Payne, F. Oyafuso, K. Sung, and E. Mlawer (2014), Pressure broadening of oxygen by water, J. Quant. Spectrosc. Radiat. Transfer, 133, 190-198, doi:10.1016/j.jqsrt.2013.08.001.
Abstract: 

A need for precise air-mass retrievals utilizing the near-infrared O2 A-band has motivated measurements of the water-broadening in oxygen. Experimental challenges have resulted in very little water broadened oxygen data. Existing water broadening data for the O2 A-band is of insufficient precision for application to the atmospheric data. Line shape theory suggests that approximate O2 pressure broadening parameters for one spectral region, such as the A-band, may be obtained from comparable spectral regions such as the O2 60 GHz Q-branch, which is also used prominently in remote sensing. We have measured precise O2–H2O broadening for the 60 GHz Q-branch and the pure-rotational transitions at room temperature with a Zeeman-modulated absorption cell using a frequency-multiplier spectrometer. Intercomparisons of these data and other O2 pressure broadening data sets confirm the expectation of only minor band-to-band scaling of pressure broadening. The measurement provides a basis for fundamental parameterization of retrieval codes for the long-wavelength atmospheric measured values. Finally, we demonstrate the use of these measurements for retrievals of air-mass via remote sensing of the oxygen A-band.

PDF of Publication: 
Download from publisher's website.