Aerosol and cloud microphysics covariability in the northeast Pacific boundary...

The core information for this publication's citation.: 
Painemal, D., J.-Y. C. Chiu, P. Minnis, C. Yost, X. Zhou, M. Cadeddu, E. W. Eloranta, E. R. Lewis, R. Ferrare, and P. Kollias (2017), Aerosol and cloud microphysics covariability in the northeast Pacific boundary layer estimated with ship-based and satellite remote sensing observations, J. Geophys. Res., 122, 2403-2418, doi:10.1002/2016JD025771.
Abstract: 

Ship measurements collected over the northeast Pacific along transects between the port of Los Angeles (33.7°N, 118.2°W) and Honolulu (21.3°N, 157.8°W) during May to August 2013 were utilized to investigate the covariability between marine low cloud microphysical and aerosol properties. Ship-based retrievals of cloud optical depth (τ) from a Sun photometer and liquid water path (LWP) from a microwave radiometer were combined to derive cloud droplet number concentration Nd and compute a cloud-aerosol interaction (ACI) metric defined as ACICCN = ∂ ln(Nd)/∂ ln(CCN), with CCN denoting the cloud condensation nuclei concentration measured at 0.4% (CCN0.4) and 0.3% (CCN0.3) supersaturation. Analysis of CCN0.4, accumulation mode aerosol concentration (Na), and extinction coefficient (σ ext) indicates that Na and σ ext can be used as CCN0.4 proxies for estimating ACI. ACICCN derived from 10 min averaged Nd and CCN0.4 and CCN0.3, and CCN0.4 regressions using Na and σ ext, produce high ACICCN: near 1.0, that is, a fractional change in aerosols is associated with an equivalent fractional change in Nd. ACICCN computed in deep boundary layers was small (ACICCN = 0.60), indicating that surface aerosol measurements inadequately represent the aerosol variability below clouds. Satellite cloud retrievals from MODerate-resolution Imaging Spectroradiometer and GOES-15 data were compared against ship-based retrievals and further analyzed to compute a satellite-based ACICCN. Satellite data correlated well with their ship-based counterparts with linear correlation coefficients equal to or greater than 0.78. Combined satellite Nd and ship-based CCN0.4 and Na yielded a maximum ACICCN = 0.88–0.92, a value slightly less than the ship-based ACICCN, but still consistent with aircraft-based studies in the eastern Pacific.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Modeling Analysis and Prediction Program (MAP)