The instrument used for the CPFM is a spectroradiometer based on a concave, holographic diffraction grating and a 1024-element diode array detector. It measures the intensities of the two linear polarization components of radiation propagating upward at the aircraft location from a range of elevation angles near the horizon. In addition, a measurement of the intensity of the direct solar beam is made by viewing a horizontal diffusing surface mounted under a quartz dome on board the aircraft. These measurements are used to verify atmospheric light-scattering calculations, which are essential for the accurate modeling of the chemistry of the stratosphere where POLARIS makes its measurements.
WB-57 - JSC
The Configurable Scanning Submillimeter-wave Instrument/Radiometer (CoSSIR) is an airborne, 16-channel total power imaging radiometer that was primarily developed for the measurement of ice clouds. CoSSIR was first flown in CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cirrus Experiment) in 2002, followed by CR-AVE (Costa Rica Aura Validation Experiment) in 2006, and TC4 (Tropical Composition, Cloud and Climate Coupling Experiment) in 2007. For CRYSTAL-FACE and CR-AVE, CoSSIR had 15 channels centered at 183±1, 183±3, 183±6.6, 220, 380±.8, 380±1.8, 380±3.3, 380±6.2, 487.25±0.8, 487.25±1.2, 487.25±3.3, and 640 GHz, where the three 487 GHz channels were dual-polarized (vertical and horizontal). For TC4, the 487 GHz channels were removed, 640 GHz was made dual-polarized, and an 874 GHz channel was added.
In 2022, CoSSIR was completely updated with new receivers under funds through the Airborne Instrument Technology Transition (AITT) to improve measurement accuracy and enable CoSSIR to be a stand-alone sensor that no longer shared a scan pedestal with its millimeter-wave sibling, CoSMIR. Frequencies were selected for CoSSIR to optimize snow and cloud ice profiling, and dual-polarization capability was added for all frequencies to provide information on particle size and shape. New channels are centered at 170.5, 177.3, 180.3, 182.3, 325±11.3, 325±3.55, 325±0.9, and 684 GHz. The updated CoSSIR flew for the first time in the 2023 deployment of IMPACTS (Investigation of Microphysics and Precipitation for Atlantic Coast Threatening Snowstorms) and operated nominally for the entire campaign, collecting a wide variety of observations over different types of clouds and precipitation.
All the receivers and radiometer electronics are housed in a small cylindrical scan head (21.5 cm in diameter and 28 cm in length) that is rotated by a two-axis gimbaled mechanism capable of generating a wide variety of scan profiles. Two calibration targets, one maintained at ambient (cold) temperature and another heated to a hot temperature of about 323 K, are closely coupled to the scan head and rotate with it about the azimuth axis. Radiometric signals from each channel are sampled at 10 ms intervals. These signals and housekeeping data are fed to the main computer in an external electronics box.
The CNC counts particles in the approximate diameter range from 0.006 m to 2 m. The instrument operates by exposing the articles to saturated Flourinert vapor at 28 C and then cooling the sample in a condenser at 5 C. The supersaturation of the vapor increases as it is cooled and the vapor condenses on the particles causing them to grow to sizes which are easily detected. The resulting droplets are passed through a laser beam and the scattered light is detected. Individual particles are counted and are referred to as condensation nuclei (CN). Two CN Counters are provided in the instrument. One counts the particles after sampling from the atmosphere and the second counts particles that have survived heating to 192C. Lab experiments show that pure sulfuric acid particles smaller than 0.05 mm are volatilized in the heater. The heated channel detects when small particles are volatile and permits speculation about the composition. The CNC II contains an impactor collector which permits the collection of particles on electron microscope grids for later analysis. The collector consists of a two stages. In the first stage the pressure of the sample is reduced by a factor of two without loosing particles by impaction on walls. The second stage consists of a thin plate impactor which collect efficiently even at small Reynolds numbers. The system collects particles as small as 0.02 m at WB-57 cruise altitudes. As many as 25 samples can be collected in a flight.
The University of Colorado closed-path tunable diode laser hygrometer (CLH) is based on the water vapor hygrometers designed by R. D. May (Maycomm, Inc.). CLH is coupled to a heated, forward-facing inlet that enhances particulate water by anisokinetic sampling. Ice water content (IWC) is derived from the measurement of enhanced total water, with knowledge of the instrument sampling characteristics, particle size distributions and ambient water vapor.
In contrast to the open-path systems of similar heritage, the CLH, which was designed for operation in the troposphere on commercial aircraft, has a single-pass absorption cell (27.62 cm long). The light source is a room-temperature solid-state laser that puts out 3-5 mW of radiation at 1.37 mm (7306.752 cm-1).
The CIN-100A is designed for aircraft mounting and measures the optical extinction coefficient and asymmetry parameter.
The NOAA chemical ionization mass spectrometer (CIMS) instrument was developed for high-precision measurements of gaseous nitric acid (HNO3) specifically under high- and variable-humidity conditions in the boundary layer. The instrument’s background signals (i.e., signals detected when HNO3-free air is measured), which depend on the humidity and HNO3 concentration of the sample air, are the most important factor affecting the limit of detection (LOD). A new system to provide HNO3-free air without changing both the humidity and the pressure of the sampled air was developed to measure the background level accurately. The detection limit was about 23 parts per trillion by volume (pptv) for 50-s averages. Field tests, including an intercomparison with the diffusion scrubber technique, were carried out at a surface site in Tokyo, Japan, in October 2003 and June 2004. A comparison between the measured concentrations of HNO3 and particulate nitrate indicated that the interference from particulate nitrate was not detectable (i.e., less than about 1%). The intercomparison indicated that the two independent measurements of HNO3 agreed to within the combined uncertainties of these measurements.
The CAPS is a combination probe designed around the newest technologies and the experience gained with over 20 years of using similar probes. It meets the goals of measuring a large range of particle sizes--0.5μm to 1.55mm--with one probe, thus minimizing space, cable connections, and data systems necessary for measurement of this range. Today's technology also provides the CAPS the processing power necessary to perform at speeds up to 200m/s. An intuitive graphical user interface, the Particle Analysis and Collection System (PACS), at the host computer, provides simple but powerful control of measurement parameters, while simultaneously displaying on-the-fly size distributions and derived parameters. All data interfaces are done via line drivers meeting the RS-422 electrical specification, allowing cable lengths of up to 100 meters--an improvement over RS-232 lines capable of only 15-meter cable lengths.
The Charged-coupled device Actinic Flux Spectroradiometers (CAFS) instruments measure in situ down- and up-welling radiation and combine to provide 4 pi steradian actinic flux density spectra from 280 to 650 nm. The sampling resolution is ~0.8 nm with a full width at half maximum (FWHM) of 1.7 nm at 297 nm. From the measured flux, photolysis frequencies are calculated for ~40 important atmospheric trace gases including O3, NO2, HCHO, HONO and NO3 using a modified version of the NCAR Tropospheric Ultraviolet and Visible (TUV) radiative transfer model. The absolute spectral sensitivity of the instruments is determined in the laboratory with 1000 W NIST-traceable tungsten-halogen lamps with a wavelength dependent uncertainty of 3–5%. During deployments, spectral sensitivity is assessed with secondary calibration lamps while wavelength assignment is tracked with Hg line sources and comparisons to spectral features in the extraterrestrial flux. The optical collectors are characterized for angular and azimuthal response and the effective planar receptor distance. CAFS have an excellent legacy of performance on the NASA DC-8 and WB-57 platforms during atmospheric chemistry and satellite validation mission. These include AVE Houston 2004 and 2005, PAVE, CR-AVE, TC4, ARCTAS, DC3, SEAC4RS, KORUS-AQ, ATom and FIREX-AQ. For FIREX-AQ, upgraded electronics and cooling reduced noise and allowed for a decrease to 1 Hz acquisition.
The Broadband Radiometers (BBR) consist of modified Kipp & Zonen CM-22 pyranometers (to measure solar irradiance) and CG-4 pyrgeometers (to measure IR irradiance) (see http://www.kippzonen.com/). The modifications to make these instruments more suitable for aircraft use include new instrument housings and amplification of the signal at the sensor. The instruments are run in current-loop mode to minimize the effects of noise in long signal cables. The housing is sealed and evacuated to prevent condensation or freezing inside the instrument. Each BBR has the following properties: Field-of-view: Hemispheric Temperature Range: -65C to +80C Estimated Accuracy: 3-5% Data Rate: 1Hz