Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Sea surface wind speed estimation from space-based lidar measurements

Hu, Y., K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria (2008), Sea surface wind speed estimation from space-based lidar measurements, Atmos. Chem. Phys., 8, 3593-3601, doi:10.5194/acp-8-3593-2008.
Abstract: 

Global satellite observations of lidar backscatter measurements acquired by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission and collocated sea surface wind speed data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), are used to investigate the relation between wind driven wave slope variance and sea surface wind speed. The new slope variance – wind speed relation established from this study is similar to the linear relation from Cox-Munk (1954) and the log-linear relation from Wu (1990) for wind speed larger than 7 m/s and 13.3 m/s, respectively. For wind speed less than 7 m/s, the slope variance is proportional to the square root of the wind speed, assuming a two dimensional isotropic Gaussian wave slope distribution. This slope variance – wind speed relation becomes linear if a one dimensional Gaussian wave slope distribution and linear slope variance – wind speed relation are assumed. Contributions from whitecaps and subsurface backscattering are effectively removed by using 532 nm lidar depolarization measurements. This new slope variance – wind speed relation is used to derive sea surface wind speed from CALIPSO single shot lidar measurements (70 m spot size), after correcting for atmospheric attenuation. The CALIPSO wind speed result agrees with the collocated AMSR-E wind speed, with 1.2 m/s rms error. Ocean surface with lowest atmospheric loading and moderate wind speed (7–9 m/s) is used as target for lidar calibration correction.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)
Mission: 
CALIPSO