Primary tabs

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020)

Liu, J., L. Baskaran, K. Bowman, D. Schimel, A. Bloom, N. Parazoo, T. Oda, D. Carroll, D. Menemenlis, J. Joiner, R. Commane, B. Daube, L. V. Gatti, K. McKain, John Miller, B. Stephens, C. Sweeney, and S. C. Wofsy (2021), Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020), Earth Syst. Sci. Data, 13, 299-330, doi:10.5194/essd-13-299-2021.
Abstract: 

Here we present a global and regionally resolved terrestrial net biosphere exchange (NBE) dataset with corresponding uncertainties between 2010–2018: Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020). It is estimated using the NASA Carbon Monitoring System Flux (CMS-Flux) topdown flux inversion system that assimilates column CO2 observations from the Greenhouse Gases Observing Satellite (GOSAT) and NASA’s Observing Carbon Observatory 2 (OCO-2). The regional monthly fluxes are readily accessible as tabular files, and the gridded fluxes are available in NetCDF format. The fluxes and their uncertainties are evaluated by extensively comparing the posterior CO2 mole fractions with CO2 observations from aircraft and the NOAA marine boundary layer reference sites. We describe the characteristics of the dataset as the global total, regional climatological mean, and regional annual fluxes and seasonal cycles. We find that the global total fluxes of the dataset agree with atmospheric CO2 growth observed by the surface-observation network within uncertainty. Averaged between 2010 and 2018, the tropical regions range from close to neutral in tropical South America to a net source in Africa; these contrast with the extra-tropics, which are a net sink of 2.5 ± 0.3 Gt C/year. The regional satellite-constrained NBE estimates provide a unique perspective for understanding the terrestrial biosphere carbon dynamics and monitoring changes in regional contributions to the changes of atmospheric CO2 growth rate. The gridded and regional aggregated dataset can be accessed at

PDF of Publication: 
Download from publisher's website.
Research Program: 
Tropospheric Composition Program (TCP)
Mission: 
ATom