Seasonal and spatial variations of global aerosol optical depth: Multi-year modeling and comparisons with multiple-platform observations

Ma, X., and F. Yu (2015), Seasonal and spatial variations of global aerosol optical depth: Multi-year modeling and comparisons with multiple-platform observations, Tellus, 67, 25115, doi:10.3402/tellusb.v67.25115.
Abstract

Recent AeroCom phase II experiments showed a large diversity in aerosol optical depth (AOD) among 16 detailed global aerosol models, which contributes to the large uncertainty in the predicted aerosol radiative forcing. The GEOS-Chem-APM, a global size-resolved aerosol model, can be considered as a representative AeroCom II model. In this study, multi-year AOD data (2004-2012) from ground-based Aerosol Robotic
Network (AERONET) measurements and Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging SpectroRadiometer (MISR) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite retrievals are used to evaluate the performance of GEOS-Chem-APM in capturing observed seasonal and spatial AOD variations. Compared to the observations, the modelled AOD is overall good over land, but quite low over ocean possibly due to low sea salt emission in the model and/or higher AOD in satellite retrievals, specifically MODIS and MISR. We chose 72 AERONET sites having at least 36 months data available and representative of high spatial domain to compare with the model and satellite data. Comparisons in various representative regions show that the model overall agrees well in the major anthropogenic emission regions, such as Europe, East Asia and North America. Relative to the observations, the modelled AOD is systematically lower in biomass burning regions such as South Africa and South America possibly due to uncertainties in emission inventory, but slightly higher in North Africa likely associated with stronger dust emissions in the model. The model is able to capture the realistic seasonal cycle in all regions, including the peak of AOD in major dust events months and biomass burning seasons. The simulated inter-annual variability is overall consistent with the observations, which is distinctly shown in South Africa and South America with strong inter-annual variability compared to other regions.

PDF of Publication
Download from publisher's website
Research Program
Atmospheric Composition Modeling and Analysis Program (ACMAP)

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.