Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.


Northern Hemisphere mid-winter vortex-displacement and vortex-split...

Liu, C., B. Tian, K. Li, G. Manney, N. Livesey, Y. L. Yung, and D. E. Waliser (2014), Northern Hemisphere mid-winter vortex-displacement and vortex-split stratospheric sudden warmings: Influence of the Madden-Julian Oscillation and Quasi-Biennial Oscillation, J. Geophys. Res., 119, 12,599-12,620, doi:10.1002/2014JD021876.

We investigate the connection between the equatorial Madden-Julian Oscillation (MJO) and different types of the Northern Hemisphere mid-winter major stratospheric sudden warmings (SSWs), i.e., vortex-displacement and vortex-split SSWs. The MJO-SSW relationship for vortex-split SSWs is stronger than that for vortex-displacement SSWs, as a result of the stronger and more coherent eastward propagating MJOs before vortex-split SSWs than those before vortex-displacement SSWs. Composite analysis indicates that both the intensity and propagation features of MJO may influence the MJO-related circulation pattern at high latitudes and the type of SSWs. A pronounced Quasi-Biennial Oscillation (QBO) dependence is found for vortex-displacement and vortex-split SSWs, with vortex-displacement (-split) SSWs occurring preferentially in easterly (westerly) QBO phases. The lagged composites suggest that the MJO-related anomalies in the Arctic are very likely initiated when the MJO-related convection is active over the equatorial Indian Ocean (around the MJO phase 3). Further analysis suggests that the QBO may modulate the MJO-related wave disturbances via its influence on the upper tropospheric subtropical jet. As a result, the MJO-related circulation pattern in the Arctic tends to be wave number-one/wave number-two ~25–30 days following phase 3 (i.e., approximately phases 7–8, when the MJO-related convection is active over the western Pacific) during easterly/westerly QBO phases, which resembles the circulation pattern associated with vortex-displacement/vortex-split SSWs.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Modeling Analysis and Prediction Program (MAP)
Energy & Water Cycle Program (EWCP)
Climate Variability and Change Program
Atmospheric Dynamics and Precipitation Program (ADP)