Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.


Evaluation of seasonal atmosphere–biosphere exchange estimations with TCCON...

Messerschmidt, J., N. Parazoo, D. Wunch, N. M. Deutscher, C. Roehl, T. Warneke, and P. Wennberg (2013), Evaluation of seasonal atmosphere–biosphere exchange estimations with TCCON measurements, Atmos. Chem. Phys., 13, 5103-5115, doi:10.5194/acp-13-5103-2013.

We evaluate three estimates of the atmospherebiosphere exchange against total column CO2 observations from the Total Carbon Column Observing Network (TCCON). Using the GEOS-Chem transport model, we produce forward simulations of atmospheric CO2 concentrations for the 2006–2010 time period using the Carnegie-AmesStanford Approach (CASA), the Simple Biosphere (SiB) and the GBiome-BGC models. Large differences in the CO2 simulations result from the choice of the atmosphere-biosphere model. We evaluate the seasonal cycle phase, amplitude and shape of the simulations. The version of CASA currently used as the a priori model by the GEOS-Chem carbon cycle community poorly represents the season cycle in total column CO2 . Consistent with earlier studies, enhancing the CO2 uptake in the boreal forest and shifting the onset of the growing season earlier significantly improve the simulated seasonal CO2 cycle using CASA estimates. The SiB model gives a better representation of the seasonal cycle dynamics. The difference in the seasonality of net ecosystem exchange (NEE) between these models is not the absolute gross primary productivity (GPP), but rather the differential phasing of ecosystem respiration (RE) with respect to GPP between these models.

PDF of Publication: 
Download from publisher's website.