An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone. The user is provided the freedom to tailor the forecast to the decision at hand by using decision-specific probability thresholds that define a forecast for an ozone exceedance. Taking advantage of the ESP, the user not only receives an increase in value over the NAQFC, but also receives value for costly decisions that the NAQFC couldn’t provide alone.
Ensemble statistical post-processing of the National Air Quality Forecast Capability: Enhancing ozone forecasts in Baltimore, Marylandq
Garner, G.G., and A.M. Thompson (2013), Ensemble statistical post-processing of the National Air Quality Forecast Capability: Enhancing ozone forecasts in Baltimore, Marylandq, Atmos. Environ., 81, 517-522, doi:10.1016/j.atmosenv.2013.09.020.
Abstract
PDF of Publication
Download from publisher's website
Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.