Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Associated content: 

Frost Point (NOAA)

The NOAA frost point instrument was designed to run unattended under the wing of NASA’s WB-57. An aircraft rated Stirling cooler provides cooling to 100 K. The cooler avoids consumables and provides a large temperature gradient that improves the response time. The vertical pylon houses the optics and provides aerodynamic pumping of the sample volume. At the bottom of the pylon there is a boundary layer plate and a vertical inlet that separates particles larger than 0.2 microns from the sampled air. There are two channels that use blue LEDs and scattered light to detect frost on the mirrors. Diamond mirrors are used for low thermal mass and high conductivity. The two channels are to be used to understand frost characteristics under flight conditions. High flow rates are used to decrease the shear boundary layer to facilitate diffusion through the boundary layer to the mirrors.

Measurements: 
Point(s) of Contact: 

Dual-Beam UV-Absorption Ozone Photometer

The NOAA-O3 instrument consists of a mercury lamp, two sample chambers that can be periodically scrubbed of ozone, and two detectors that measure the 254-nm radiation transmitted through the chamber. The ozone absorption cross-section at this wavelength is accurately known; hence, the ozone number density can be easily calculated. Since the two absorption chambers are identical, virtually continuous measurements of ozone are made by alternating the ambient air sample and ozone scrubbed sample between the two chambers. At a one-second data collection rate, the minimum detectable concentration of ozone (one standard deviation) is 1.5 x 10 10 molecules/cm 3 (0.6ppbv at STP).

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

High-Sensitivity Fast-Response CO2 Analyzer

The high-sensitivity fast response CO2 instrument measures CO2 concentrations in situ using the light source, gas cells, and solid-state detector from a modified nondispersive infrared CO2 analyzer (Li-Cor, Inc., Lincoln, NE). These components are stabilized along the detection axis, vibrationally isolated, and housed in a temperature-controlled pressure vessel. Sample air enters a rear-facing inlet, is preconditioned using a Nafion drier (to remove water vapor), then is compressed by a Teflon diaphragm pump. A second water trap, using dry ice, reduces the sample air dewpoint to less than 70C prior to detection. The CO2 mixing ratio of air flowing through the sample gas cell is determined by measuring absorption at 4.26 microns relative to a reference gas of known concentration. In-flight calibrations are performed by replacing the air sample with reference gas every 10 minutes, with a low-span and a high-span gas every 20 minutes, and with a long-term primary standard every 2 hours. The long-term standard is used sparingly and serves as a check of the flight-to-flight accuracy and precision of the measurements, augmented by ground-based calibrations before and after flights.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Meteorological Measurement System

The Meteorological Measurement System (MMS) is a state-of-the-art instrument for measuring accurate, high resolution in situ airborne state parameters (pressure, temperature, turbulence index, and the 3-dimensional wind vector). These key measurements enable our understanding of atmospheric dynamics, chemistry and microphysical processes. The MMS is used to investigate atmospheric mesoscale (gravity and mountain lee waves) and microscale (turbulence) phenomena. An accurate characterization of the turbulence phenomenon is important for the understanding of dynamic processes in the atmosphere, such as the behavior of buoyant plumes within cirrus clouds, diffusions of chemical species within wake vortices generated by jet aircraft, and microphysical processes in breaking gravity waves. Accurate temperature and pressure data are needed to evaluate chemical reaction rates as well as to determine accurate mixing ratios. Accurate wind field data establish a detailed relationship with the various constituents and the measured wind also verifies numerical models used to evaluate air mass origin. Since the MMS provides quality information on atmospheric state variables, MMS data have been extensively used by many investigators to process and interpret the in situ experiments aboard the same aircraft.

Point(s) of Contact: 

Harvard Lyman-α Photofragment Fluorescence Hygrometer

The Harvard Water Vapor (HWV) instrument combines two independent measurement methods for the simultaneous in situ detection of ambient water vapor mixing ratios in a single duct. This dual axis instrument combines the heritage of the Harvard Lyman-α photo-fragment fluorescence instrument (LyA) with the newly designed tunable diode laser direct absorption instrument (HHH). The Lyman-α detection axis functions as a benchmark measurement, and provides a requisite link to the long measurement history of Harvard Lyman-α aboard NASA’s WB-57 and ER-2 aircraft [Weinstock et al., 1994; Hintsa et al., 1999; Weinstock et al., 2009]. The inclusion of HHH provides a second high precision measurement that is more robust than LyA to changes in its measurement sensitivity [Smith et al., in preparation]. The simultaneous utilization of radically different measurement techniques facilitates the identification, diagnosis, and constraint of systematic errors both in the laboratory and in flight. As such, it constitutes a significant step toward resolving the controversy surrounding water vapor measurements in the upper troposphere and lower stratosphere.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Harvard Hydroxyl Experiment

OH is detected by direct laser induced fluorescence in the (0-1) band of the 2?-2? electronic transition. A pulsed dye-laser system produces frequency tunable laser light at 282 nm. An on-board frequency reference cell is used by a computer to lock the laser to the appropriate wavelength. Measurement of the signal is then made by tuning the laser on and off resonance with the OH transition.

Stratospheric air is channeled into the instrument using a double-ducted system that both maintains laminar flow through the detection region and slows the flow from free stream velocity (200 m/s) to 40 m/s. The laser light is beam-split and directed to two detection axes where it passes through the stratospheric air in multipass White cells.

Fluorescence from OH (centered at 309 nm) is detected orthogonal to both the flow and the laser propagation using a filtered PMT assembly. Optical stability is checked periodically by exchanging the 309 nm interference filter with a filter centered at 302 nm, where Raman scattering of N2 is observed.

HO2 is measured as OH after chemical titration with nitric oxide: HO2 + NO → OH + NO2. Variation of added NO density and flow velocity as well as the use of two detection axes aid in diagnosis of the kinetics of this titration. Measurements of ozone (by uv absorption) and water vapor (by photofragment fluorescence) are made as diagnostics of potential photochemical interference from the mechanism: O3 + hv (282 nm) → O(1D) + O2, followed by: O(1D) + H2O → OH + OH

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Focused Cavity Aerosol Spectrometer

The FCAS II sizes particles in the approximate diameter range from 0.07 mm to 1 mm. Particles are sampled from the free stream with a near isokinetic sampler and are transported to the instrument. They are then passed through a laser beam and the light scattered by individual particles is measured. Particle size is related to the scattered light. The data reduction for the FCAS II takes into account the water which is evaporated from the particle in sampling and the effects of anisokinetic sampling (Jonsson et al., 1995).

The FCAS II and its predecessors have provided accurate aerosol size distribution measurements throughout the evolution of the volcanic cloud produced by the eruption of Mt. Pinatubo. (Wilson et al., 1993). Near co-incidences between FCAS II and SAGE II measurements show good agreement between optical extinctions calculated from FCAS size distributions and extinctions measured by SAGE II.

Accuracy: The instrument has been calibrated with monodisperse aerosol carrying a single charge. The FCAS III and the electrometer agree to within 10%. Sampling errors may increase the uncertainty but a variety of comparisons suggests that total uncertainties in aerosol surface are near 30% (Jonsson, et al., 1995).

Precision: The precision equals 1/ÖN where N is the number of particles counted. In many instances the precision on concentration measurements may reach 7% for 0.1 Hz data. If better precision is desired, it is necessary only to accumulate over longer time intervals.

Response Time: Data are processed at 0.1 Hz. However, the response time depends upon the precision required to detect the change in question. Small changes may require longer times to detect. Plume measurements may be processed with 1 s resolution.

Weight: Approximately 50 lbs.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Composition and Photo-Dissociative Flux Measurement

The instrument used for the CPFM is a spectroradiometer based on a concave, holographic diffraction grating and a 1024-element diode array detector. It measures the intensities of the two linear polarization components of radiation propagating upward at the aircraft location from a range of elevation angles near the horizon. In addition, a measurement of the intensity of the direct solar beam is made by viewing a horizontal diffusing surface mounted under a quartz dome on board the aircraft. These measurements are used to verify atmospheric light-scattering calculations, which are essential for the accurate modeling of the chemistry of the stratosphere where POLARIS makes its measurements.

Measurements: 
Point(s) of Contact: 

Condensation Nuclei Counter

The CNC counts particles in the approximate diameter range from 0.006 m to 2 m. The instrument operates by exposing the articles to saturated Flourinert vapor at 28 C and then cooling the sample in a condenser at 5 C. The supersaturation of the vapor increases as it is cooled and the vapor condenses on the particles causing them to grow to sizes which are easily detected. The resulting droplets are passed through a laser beam and the scattered light is detected. Individual particles are counted and are referred to as condensation nuclei (CN). Two CN Counters are provided in the instrument. One counts the particles after sampling from the atmosphere and the second counts particles that have survived heating to 192C. Lab experiments show that pure sulfuric acid particles smaller than 0.05 mm are volatilized in the heater. The heated channel detects when small particles are volatile and permits speculation about the composition. The CNC II contains an impactor collector which permits the collection of particles on electron microscope grids for later analysis. The collector consists of a two stages. In the first stage the pressure of the sample is reduced by a factor of two without loosing particles by impaction on walls. The second stage consists of a thin plate impactor which collect efficiently even at small Reynolds numbers. The system collects particles as small as 0.02 m at WB-57 cruise altitudes. As many as 25 samples can be collected in a flight.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Airborne Tunable Laser Absorption Spectrometer

ATLAS uses a tunable laser to detect an infrared-active target gas such as N2O, methane, carbon monoxide, or ozone. The laser source is tuned to an individual roto-vibrational line in an infrared absorption band of the target gas, and is frequency modulated at 2 kHz. The instrument detects the infrared target gas by measuring the fractional absorption of the infrared beam from the tunable diode laser as it traverses a multipass White cell containing an atmospheric sample at ambient pressure.

Synchronous detection of the resultant amplitude modulation at 2kHz and 4kHz yields the first and second harmonics of the generally weak absorption feature with high sensitivity (DI/I < 1E-5). Part of the main beam is split off through a short cell containing a known amount of the target gas to a reference detector. The reference first harmonic signal is used to lock the laser frequency to the absorption line center, while the second harmonic signal is used to derive the calibration factor needed to convert the measurement beam second harmonic amplitude into absolute gas concentration. A zero beam is included to correct for background gas absorption occurring outside the multipass cell. The response time of the instrument is set by the gas flow rate through the White cell, which is normally adjusted to give a new sample every second. Periodic standard additions of the target gas are injected into the sample stream as a second method to calibrate the measurement technique and as an overall instrument diagnostic.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Pages

Subscribe to RSS - SPADE