Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Synonyms: 
ARCTAS I
ARCTAS-CARB
Associated content: 

DC-8 Palmdale Hangar - Interior

DC-8 Palmdale Hangar Nov. 2007

Fairbanks - Everts Hangar interior

Fairbanks Alaska - FBO Facility -Everts Hangar

Langley Aerosol Research Group Experiment

Langley Aerosol Research Group Experiment (LARGE).  The "classic" suite of instrumenation measures in-situ aerosol micrphysical and optical properties. The package can be tailored for specific science objectives and to operate on a variety of aircraft. Depending on the aircraft, measurments are made from either a shrouded single-diffuser "Clarke" inlet, from a BMI (Brechtel Manufacturing Inc.) isokinetic inlet, or from a HIML inlet. Primary measurements include:

1.) total and non-volatile particle concentrations (3nm and 10nm nominal size cuts),
2.) dry size distributions from 3nm to 5µm diameter using a combination of mobilty-optical-aerodynamic sizing techniques,
3.) dry and humidified scattering coefficients (at 450, 550, and 700nm wavelength), and
4.) dry absorption coefficients (470, 532, and 670nm wavelength). 

LARGE derived products include particle size statistics (integrated number, surface area, and volume concentrations for ultrafine, accumulation, and coarse modes), dry and ambient aerosol extinction coefficients, single scattering albedo, angstrom exponent coefficients, and scattering hygroscopicity parameter f(RH).

Aircraft: 
DC-8 - AFRC, C-130H - WFF, P-3 Orion - WFF, HU-25 Falcon - LaRC, King Air B-200 - LaRC, Twin Otter - CIRPAS - NPS
Point(s) of Contact: 

Soluble Acidic Gases and Aerosols

As part of the measurement team on the NASA DC-8 we operate two related installations: a mist chamber/ion chromatograph (MC/IC) sampling/analysis system providing near real time results for selected species, and a bulk aerosol system that collects particulates onto filters for subsequent analysis. We use ion chromatography on aqueous extracts of the bulk aerosol samples collected on Teflon filters to quantify soluble ions (Cl-, Br-, NO3-, SO42-, C2O42-, Na+, NH4+, K+, Ca+, and Mg+). Filters are exposed on all level flight legs. Below 3 km exposure times are 5 minutes or less, increasing at higher altitudes to a maximum sample time of 15 minutes. Aerosols participate in heterogeneous chemistry, impact radiative transfer, and can be detected from space. Our measurements help to validate and extend retrievals of aerosol distributions and properties by MODIS, MISR and CALIPSO. In addition, several of the particle-associated ions are tracers of sources of gas and aerosol pollutants (e.g., SO42- from industrial emissions of SO2, enhancements of C2O42-, K+, and NH4+ indicate encounters with biomass burning plumes, Na+, and Cl- are tracers of seasalt, Mg2+ and Ca2+ are tracers of dust). Our system has two inlets, allowing collection of paired samples simultaneously.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Particle Into Liquid Sampler

The Particle Into Liquid Sampler (PILS) was developed for rapid automated on-line and continuous measurement of ambient aerosol bulk composition. The general approach is based on earlier devices in which ambient particles are mixed with saturated water vapor to produce droplets easily collected by inertial techniques. The resulting liquid stream is analyzed with an ion chromatograph to quantitatively measure the bulk aerosol ionic components. In this instrument, a modified version of a particle size magnifier is employed to activate and grow particles comprising the fine aerosol mass. A single jet inertial impactor is used to collect the droplets onto a vertical glass plate that is continually washed with a constant water diluent flow of nominally 0.10 ml min-1. The flow is divided and then analyzed by a dual channel ion chromatograph. In its current form, 4.3 min integrated samples were measured every 7 min. The instrument provides bulk composition measurements with a detection limit of approximately 0.1 µg m-3 for chloride, nitrate, sulfate, sodium, ammonium, calcium, and potassium.

Instrument Type: 
Measurements: 
Na, NH4, K, Mg, Ca+2, Cl, NO2, NO3, SO4, PO4, Br-, WSOC
Point(s) of Contact: 

Chemical Ionization Mass Spectrometer

The CIMS instrument consists of a low pressure ion molecule reactor (IMR) coupled to a quadrupole mass filter by an actively pumped collisional dissociation chamber (CDC) and an octopole ion guide. The vacuum system is a 100 mm outer diameter stainless steel chamber evacuated with two small turbo pumps (70 l s-1). The mass filter is a set of 9.5 mm diameter quadrupole rods housed in the main vacuum chamber. The CDC is a short 80 mm diameter chamber that houses an octopole ion guide and is evacuated with a hybrid molecular drag pump. The IMR is evacuated with a scroll pump (300 l min-1) that also serves as the backing pump for the mass spectrometer.

Click here for the Collaborative Ground and Airborne Observations description page.

Instrument Type: 
Measurements: 
Aircraft: 
DC-8 - AFRC, Gulfstream V - NSF
Point(s) of Contact: 

Pages

Subscribe to RSS - ARCTAS