Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Synonyms: 
ARCTAS I
ARCTAS-CARB
Associated content: 

Chemical Ionization Mass Spectrometer

The single mass analyzer CIMS (S-CIMS) was developed for use on NASA’s ER-2 aircraft. Its first measurements were made in 2000 (SOLVE). Subsequently, it has flown on the NASA DC-8 aircraft for INTEX-NA, DICE, TC4, and ARCTAS, as well as on the NCAR C-130 during MILAGRO/INTEX-B. HNO3 is measured by selective ion chemical ionization via the fluoride transfer reaction: CF3O- + HNO3 → HF • NO3- + CF2O In addition to its fast reaction rate with HNO3, CF3O- can be used to measure additional acids and nitrates as well as SO2 [Amelynck et al., 2000; Crounse et al., 2006; Huey et al., 1996]. We have further identified CF3O- chemistry as useful for the measurement of less acidic species via clustering reactions [Crounse et al., 2006; Paulot et al., 2009a; Paulot et al., 2009b; St. Clair et al., 2010]: CF3O- + HX → CF3O- • HX where, e.g., HX = HCN, H2O2, CH3OOH, CH3C(O)OOH (PAA) The mass analyzer of the S-CIMS instrument has recently been upgraded from a quadrupole to a time-of-flight (ToF) analyzer. The ToF admits the sample ion beam to the ion extractor, where a pulse of high voltage orthogonally deflects and accelerates the ions into the reflectron, which in turn redirects the ions toward the multichannel plate detector. Ions in the ToF follow a V-shaped, 43 cm path from extractor to detector, separating by mass as the smaller ions are accelerated to greater velocities by the high voltage pulse. The detector collects the ions as a function of time following each extractor pulse. The rapid-scan collection of the ToF guarantees a high temporal resolution (1 Hz or faster) and simultaneous data products from the S-CIMS instrument for all mass channels [Drewnick et al., 2005]. We have flown a tandem CIMS (TCIMS) instrument in addition to the SCIMS since INTEX-B (2006). The T-CIMS provides parent-daughter mass analysis, enabling measurement of compounds precluded from quantification by the S-CIMS due to mass interferences (e.g. MHP) or the presence of isobaric compounds (e.g. isoprene oxidation products) [Paulot et al., 2009b; St. Clair et al., 2010]. Calibrations of both CIMS instruments for HNO3 and organic acids are performed in flight using isotopically-labeled reagents evolved from a thermally-stabilized permeation tube oven [Washenfelder et al., 2003]. By using an isotopically labeled standard, the product ion signals are distinct from the natural analyte and calibration can be performed at any time without adversely affecting the ambient measurement. We also fly calibration standards for H2O2 (evolved from urea-hydrogen peroxide) and MHP (from a diffusion vial).

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Aerosol Optical Properties

Aerosols (particulate matter) have a dramatic effect on radiative forcing of the climate, in some cases cooling and in other cases warming. The Fourth Assessment Report of the IPCC estimates that direct radiative forcing due to all aerosols is a cooling of -0.50 W m-2 with absorbing aerosol (black carbon) responsible for a warming of +0.22 W m-2, but the uncertainties associated with these numbers are very large. Better measurements of the optical properties of aerosols, especially absorption coefficient and asymmetry parameter, and their spatial and temporal distribution are required to reduce these uncertainties and improve the ability of models to predict climate change. Aero3X was designed to provide such measurements. It is a light weight (11 kg), compact (0.25 x 0.30 x 0.6 m), and fast (1 Hz sample rate) instrument intended for use on an Unmanned Aerial System (UAS) but suitable for flight on other aircraft and for surface measurements. Aero3X uses an off-axis cavity ring-down technique to measure extinction coefficient and a reciprocal nephelometry technique for measurement of total-, forward- and back-scatter coefficients at wavelengths of 405 nm and 675 nm. Its outstanding precision (0.1 Mm-1) and sensitivity (0.2 Mm- 1) allow the determination of absorption coefficient, single-scattering albedo, estimates of backscatter to extinction ratio and asymmetry parameter at both wavelengths, and Angstrom exponent. Together with its humidification system for measurement of the dependence of aerosol optical properties on relative humidity, these represent a complete set of the aerosol optical properties important to climate and air quality. Aero3X was designed to operate in pollution plumes where NO2 may cause interference with the measurement, therefore, a measurement of NO2 mixing ratio is also made.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Airborne Tropospheric Hydrogen Oxides Sensor

ATHOS uses laser-induced fluorescence (LIF) to measure OH and HO2 simultaneously. OH is both excited and detected with the A2Σ+ (v’=0) → X2π (v”=0) transition near 308 nm. HO2 is reacted with reagent NO to form OH and is then detected with LIF. The laser is tuned on and off the OH wavelength to determine the fluorescence and background signals. ATHOS can detect OH and HO2 in clear air and light clouds from Earth's surface to the lower stratosphere. The ambient air is slowed from the aircraft speed of 240 m/s to 8-40 m/s in an aerodynamic nacelle. It is then pulled by a vacuum pump through a small inlet, up a sampling tube, and into two low-pressure detection cells - the first for OH and the second for HO2. Detection occurs in each cell at the intersection of the airflow, the laser beam, and the detector field-of-view.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Pages

Subscribe to RSS - ARCTAS