Organization:
National Center for Atmospheric Research
Business Address:
NCAR
Boulder, CO 80301
United StatesFirst Author Publications:
- Heymsfield, A., et al. (2014), Relationships between Ice Water Content and Volume Extinction Coefficient from In Situ Observations for Temperatures from 08 to 2868C: Implications for Spaceborne Lidar Retrievals*, J. Appl. Meteor. Climat., 53, 479-505, doi:10.1175/JAMC-D-13-087.1.
- Heymsfield, A., et al. (2011), Formation and Spread of Aircraft-Induced Holes in Clouds, Science, 333, 77-81, doi:10.1126/science.1202851.
- Heymsfield, A., et al. (2010), Improved Representation of Ice Particle Masses Based on Observations in Natural Clouds, J. Atmos. Sci., 67, 3303-3318, doi:10.1175/2010JAS3507.1.
- Heymsfield, A., et al. (2010), Aircraft-Induced Hole Punch and Canal Clouds Inadvertent Cloud Seeding, Bull. Am. Meteorol. Soc., 753-766.
- Heymsfield, A., et al. (2009), Microphysics of Maritime Tropical Convective Updrafts at Temperatures from -20 to -60C, J. Atmos. Sci., 66, 3530-3562, doi:10.1175/2009JAS3107.1.
- Heymsfield, A., et al. (2008), The 94-GHz radar dim band: Relevance to ice cloud properties and CloudSat, Geophys. Res. Lett., 35, L03802, doi:10.1029/2007GL031361.
- Heymsfield, A., et al. (2008), Testing IWC Retrieval Methods Using Radar and Ancillary Measurements with In Situ Data, J. Appl. Meteor. Climat., 47, 135-163, doi:10.1175/2007JAMC1606.1.
- Heymsfield, A., A. Bansemer, and C. Twohy (2007), Refinements to Ice Particle Mass Dimensional and Terminal Velocity Relationships for Ice Clouds. Part I: Temperature Dependence, J. Atmos. Sci., 64, 1047-1067, doi:10.1175/JAS3890.1.
- Heymsfield, A., et al. (2007), Reply, J. Atmos. Oceanic Technol., 24, 1511-1518, doi:10.1175/JTECH2077.1.
- Heymsfield, A., et al. (2007), Refinements to Ice Particle Mass Dimensional and Terminal Velocity Relationships for Ice Clouds. Part II: Evaluation and Parameterizations of Ensemble Ice Particle Sedimentation Velocities, J. Atmos. Sci., 64, 1068-1088, doi:10.1175/JAS3900.1.
- Heymsfield, A., et al. (2006), Effective Radius of Ice Cloud Particle Populations Derived from Aircraft Probes, J. Atmos. Oceanic Technol., 23, 361-380.
- Heymsfield, A., et al. (2005), Homogeneous Ice Nucleation in Subtropical and Tropical Convection and Its Influence on Cirrus Anvil Microphysics, J. Atmos. Sci., 62, 41-64.
- Heymsfield, A., Z. Wang, and S. Matrosov (2005), Improved Radar Ice Water Content Retrieval Algorithms Using Coincident Microphysical and Radar Measurements, J. Appl. Meteor., 44, 1391-1412.
- Heymsfield, A., et al. (2004), Effective Ice Particle Densities Derived from Aircraft Data, J. Atmos. Sci., 61, 982.
Co-Authored Publications:
- Liu, C., et al. (2014), A two-habit model for the microphysical and optical properties of ice clouds, Atmos. Chem. Phys., 14, 13719-13737, doi:10.5194/acp-14-13719-2014.
- Zhang, D., et al. (2014), Ice Concentration Retrieval in Stratiform Mixed-Phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations, J. Atmos. Sci., 71, 3613-3635, doi:10.1175/JAS-D-13-0354.1.
- Perring, A., et al. (2013), Evaluation of a Perpendicular Inlet for Airborne Sampling of Interstitial Submicron Black-Carbon Aerosol, Aerosol Sci. Tech., 47, 1066-1072, doi:10.1080/02786826.2013.821196.
- Avery, M., et al. (2012), Cloud ice water content retrieved from the CALIOP space-based lidar, Geophys. Res. Lett., 39, L05808, doi:10.1029/2011GL050545.
- Baumgardner, D., et al. (2012), In Situ, Airborne Instrumentation: Addressing and Solving Measurement Problems in Ice Clouds, Bull. Am. Meteorol. Soc., ES29-ES34.
- Evans, K. F., et al. (2012), Ice hydrometeor profile retrieval algorithm for high-frequency microwave radiometers: application to the CoSSIR instrument during TC4, Atmos. Meas. Tech., 5, 2277-2306, doi:10.5194/amt-5-2277-2012.
- Minnis, P., et al. (2012), Simulations of Infrared Radiances over a Deep Convective Cloud System Observed during TC4: Potential for Enhancing Nocturnal Ice Cloud Retrievals, Remote Sens., 4, 3022-3054, doi:10.3390/rs4103022.
- Zhang, D., et al. (2012), Quantifying the impact of dust on heterogeneous ice generation in midlevel supercooled stratiform clouds, Geophys. Res. Lett., 39, L18805, doi:10.1029/2012GL052831.
- Baum, B. A., et al. (2011), Improvements in Shortwave Bulk Scattering and Absorption Models for the Remote Sensing of Ice Clouds, J. Appl. Meteor. Climat., 50, 1037-1056, doi:10.1175/2010JAMC2608.1.
- Yuan, J., R. Houze, and A. Heymsfield (2011), Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat, J. Atmos. Sci., 68, 1653-1674, doi:10.1175/2011JAS3687.1.
- Eidhammer, T., et al. (2010), Ice Initiation by Aerosol Particles: Measured and Predicted Ice Nuclei Concentrations versus Measured Ice Crystal Concentrations in an Orographic Wave Cloud, J. Atmos. Sci., 67, 2417-2436, doi:10.1175/2010JAS3266.1.
- Scheuer, E., et al. (2010), Evidence of nitric acid uptake in warm cirrus anvil clouds during the NASA TC4 campaign, J. Geophys. Res., 115, D00J03, doi:10.1029/2009JD012716.
- Tian, L., et al. (2010), A Study of Cirrus Ice Particle Size Distribution Using TC4 Observations, J. Atmos. Sci., 67, 195-216, doi:10.1175/2009JAS3114.1.
- Yost, C., et al. (2010), Comparison of GOES‐retrieved and in situ measurements of deep convective anvil cloud microphysical properties during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J06, doi:10.1029/2009JD013313.
- Austin, R. T., A. Heymsfield, and G. Stephens (2009), Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature, J. Geophys. Res., 114, D00A23, doi:10.1029/2008JD010049.
- Hong, G., et al. (2009), Parameterization of Shortwave and Longwave Radiative Properties of Ice Clouds for Use in Climate Models, J. Climate, 22, 6287-6312, doi:10.1175/2009JCLI2844.1.
- Jensen, E., et al. (2009), On the importance of small ice crystals in tropical anvil cirrus, Atmos. Chem. Phys. Discuss., 9, 5321-5370.
- Twohy, C., et al. (2009), Saharan dust particles nucleate droplets in eastern Atlantic clouds, Geophys. Res. Lett., 36, L01807, doi:10.1029/2008GL035846.
- Zipser, E., et al. (2009), The Saharan Air Layer And The Fate Of African Easterly Waves: NASA’s AMMA Field Study of Tropical Cyclogenesis, Bull. Am. Meteorol. Soc., 1137-1156, doi:10.1175/2009BAMS2728.1.
- Field, P. R., et al. (2008), Determination of the Combined Ventilation Factor and Capacitance for Ice Crystal Aggregates from Airborne Observations in a Tropical Anvil Cloud, J. Atmos. Sci., 65, 376-391, doi:10.1175/2007JAS2391.1.
- Hong, G., et al. (2008), Relationship between ice water content and equivalent radar reflectivity for clouds consisting of nonspherical ice particles, J. Geophys. Res., 113, D20205, doi:10.1029/2008JD009890.
- Jackson, G. S., et al. (2008), Nonspherical and spherical characterization of ice in Hurricane Erin for wideband passive microwave comparisons, J. Geophys. Res., 113, D06201, doi:10.1029/2007JD008866.
- Baum, B. A., et al. (2007), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part III: High-Resolution Spectral Models from 100 to 3250 cm-1, J. Appl. Meteor. Climat., 46, 423-434, doi:10.1175/JAM2473.1.
- Fridlind, A. M., et al. (2007), Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results, J. Geophys. Res., 112, D24202, doi:10.1029/2007JD008646.
- Massie, S., et al. (2007), Aerosol indirect effects as a function of cloud top pressure, J. Geophys. Res., 112, D06202, doi:10.1029/2006JD007383.
- McFarquhar, G., et al. (2007), Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1. Observations, J. Geophys. Res., 112, D24201, doi:10.1029/2007JD008633.
- Prenni, A. J., et al. (2007), Examinations of ice formation processes in Florida cumuli using ice nuclei measurements of anvil ice crystal particle residues, J. Geophys. Res., 112, D10221, doi:10.1029/2006JD007549.
- Popp, P., et al. (2006), The observation of nitric acid-containing particles in the tropical lower stratosphere, Atmos. Chem. Phys., 6, 601-611, doi:10.5194/acp-6-601-2006.
- Baum, B. A., et al. (2005), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part II: Narrowband Models, J. Appl. Meteor., 44, 1896-1911, doi:10.1175/JAM2309.1.
- Baum, B. A., et al. (2005), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part I: Microphysical Data and Models, J. Appl. Meteor., 44, 1885-1895.
- Garrett, T., et al. (2005), Evolution of a Florida Cirrus Anvil, J. Atmos. Sci., 62, 2352-2372.
- Jensen, E., et al. (2005), Ice supersaturations exceeding 100% at the cold tropical tropopause: implications for cirrus formation and dehydration, Atmos. Chem. Phys., 5, 851-862, doi:10.5194/acp-5-851-2005.
- Matrosov, S., A. Heymsfield, and Z. Wang (2005), Dual-frequency radar ratio of nonspherical atmospheric hydrometeors, Geophys. Res. Lett., 32, L13816, doi:10.1029/2005GL023210.
- Phillips, V. T. J., et al. (2005), Anvil glaciation in a deep cumulus updraught over Florida simulated with the Explicit Microphysics Model. I: Impact of various nucleation processes, Q. J. R. Meteorol. Soc., 131, 2019-2046, doi:10.1256/qj.04.85.
- Wang, Z., et al. (2005), Retrieving optically thick ice cloud microphysical properties by using airborne dual-wavelength radar measurements, J. Geophys. Res., 110, D19201, doi:10.1029/2005JD005969.
- Fridlind, A. M., et al. (2004), Evidence for the Predominance of Mid-Tropospheric Aerosols as Subtropical Anvil Cloud Nuclei, Science, 304, 718.
- Gao, R., et al. (2004), Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds, Science, 303, 516-520, doi:10.1126/science.1091255.
- Garrett, T., et al. (2004), Convective generation of cirrus near the tropopause, J. Geophys. Res., 109, D21203, doi:10.1029/2004JD004952.
- Hallar, A. G., et al. (2004), Measurements of ice water content in tropopause region Arctic cirrus during the SAGE III Ozone Loss and Validation Experiment (SOLVE), J. Geophys. Res., 109, D17203, doi:10.1029/2003JD004348.
- Ackerman, A. S., et al. (2000), Reduction of Tropical Cloudiness by Soot, Science, 288, 1042-1047, doi:10.1126/science.288.5468.1042.
- Lawson, P., et al. (1998), Shapes, sizes and light scattering properties of ice crystals in cirrus and a persistent contrail during SUCCESS, Geophys. Res. Lett., 25, 1331-1334.
- Westphal, D. L., et al. (1996), Initialization and validation of a simulation of cirrus using FIRE-II Data, J. Atmos. Sci., 53, 3397-3429.
- Pueschel, R., et al. (1995), Condensed Water in Tropical Cyclone Oliver, 8 February 1993, J. Res. Atmos., 38, 297-313 (manuscript in preparation).
- Jensen, E., et al. (1994), Microphysical Modeling of Cirrus 1: Comparison with 1986 FIRE IFO Measurements, J. Geophys. Res., 99, 10,421-10.
- Jensen, E., et al. (1994), Microphysical Modeling of Cirrus 2: Sensitivity Studies, J. Geophys. Res., 99, 10,443-10.
- Kinne, S., et al. (1992), Cirrus Microphysics and Radiative Transfer: Cloud Field Study on 28 October 1986, 661 (manuscript in preparation).
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.