Organization
Pennsylvania State University
First Author Publications
-
Brune, W.H., et al. (2022), Observations of atmospheric oxidation and ozone production in South Korea, Atmos. Environ., 269, 118854, doi:10.1016/j.atmosenv.2021.118854.
-
Brune, W.H., et al. (2020), Exploring Oxidation in the Remote Free Troposphere: Insights From Atmospheric Tomography (ATom), J. Geophys. Res., 125, doi:10.1029/2019JD031685.
-
Brune, W.H., et al. (2019), ATom: L2 Measurements from Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS), Ornl Daac, doi:10.3334/ORNLDAAC/1709.
-
Brune, W.H., et al. (2018), Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study, Atmos. Chem. Phys., 18, 14493-14510, doi:10.5194/acp-18-14493-2018.
-
Brune, W.H., et al. (1999), OH and HO2 chemistry in the north Atlantic free troposphere, Geophys. Res. Lett., 26, 3077-3080.
-
Brune, W.H., et al. (1990), In situ Observations of ClO in the Arctic Stratosphere: ER-2 Aircraft Results from 59°N to 80°N Latitude, Geophys. Res. Lett., 17, 505-508.
-
Brune, W.H., et al. (1989), In situ observations of ClO in the Antarctic: ER-2 aircraft results from 54 S to 72 S latitude, J. Geophys. Res., 94, 16649-16663.
-
Brune, W.H., and J.G. Anderson (1986), In Situ Observations of Midlatitude Stratospheric ClO and BrO, Geophys. Res. Lett., 13, 1391-1394.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Roozitalab, B., et al. (2024), Measurements and Modeling of the Interhemispheric Differences of Atmospheric Chlorinated Very Short-Lived Substances, J. Geophys. Res., doi:10.1029/2023JD039518.
-
Cho, C., et al. (2023), a petrochemical industry and its volatile organic compounds (VOCs) emission rate, Elem Sci Anth, 9, doi:10.1525/elementa.2021.00015.
-
Kim, H., et al. (2023), Observed versus simulated OH reactivity during KORUS-AQ campaign: Implications for emission inventory and chemical environment in East Asia, KORUS-AQ campaign. Elem Sci Anth, 10, 1-26, doi:https.
-
Cho, C., et al. (2022), a petrochemical industry and its volatile organic compounds (VOCs) emission rate, Elementa: Science of the Anthropocene, 9, doi:10.1525/elementa.2021.00015.
-
Lee, Y.R., et al. (2022), An investigation of petrochemical emissions during KORUS-AQ: Ozone production, reactive nitrogen evolution, and aerosol production. Elementa: Science of the Anthropocene, 10, 00079-24, doi:10.1525/elementa.2022.00079.
-
Miller, D.O., and W.H. Brune (2022), Investigating the Understanding of Oxidation Chemistry Using 20 Years of Airborne OH and HO2 Observations, J. Geophys. Res., 127, e2021JD035368, doi:10.1029/2021JD035368.
-
zhang, X., et al. (2022), Probing isoprene photochemistry at atmospherically relevant nitric oxide levels, Chem, 8, 2022, doi:10.1016/j.chempr.2022.08.003.
-
Thompson, C., et al. (2021), The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-20-0315.1.
-
Twohy, C.H., et al. (2021), Deep convection as a source of new particles in the midlatitude upper troposphere, J. Geophys. Res., 107, 4560, doi:10.1029/2001JD000323.
-
Thames, A.B., et al. (2020), Missing OH reactivity in the global marine boundary layer, Atmos. Chem. Phys., 20, 4013-4029, doi:10.5194/acp-20-4013-2020.
-
Travis, K., et al. (2020), Constraining remote oxidation capacity with ATom observations, Atmos. Chem. Phys., 20, 7753-7781, doi:10.5194/acp-20-7753-2020.
-
Veres, P.R., et al. (2020), Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere, Proc. Natl. Acad. Sci., 117, doi:10.1073/pnas.1919344117.
-
Wang, S., et al. (2020), Global Atmospheric Budget of Acetone: Air‐Sea Exchange and the Contribution to Hydroxyl Radicals, J. Geophys. Res., 125, e2020JD032553, doi:10.1029/2020JD032553.
-
Oak, Y.J., et al. (2019), Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea, Elem Sci Anth, 7, 56, doi:10.1525/elementa.394.
-
Wolfe, G.M., et al. (2019), ATom: Column-Integrated Densities of Hydroxyl and Formaldehyde in Remote Troposphere, Ornl Daac, doi:10.3334/ORNLDAAC/1669.
-
Wolfe, G.M., et al. (2019), Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1821661116.
-
Christian, K.E., et al. (2018), Global sensitivity analysis of GEOS-Chem modeled ozone and hydrogen oxides during the INTEX campaigns, Atmos. Chem. Phys., 18, 2443-2460, doi:https://doi.org/10.5194/acp-18-2443-2018.
-
Mao, J., et al. (2018), Southeast Atmosphere Studies: learning from model-observation syntheses, Atmos. Chem. Phys., 18, 2615-2651, doi:10.5194/acp-18-2615-2018.
-
Nault, B.A., et al. (2018), Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ, Atmos. Chem. Phys., 18, 17769-17800, doi:10.5194/acp-18-17769-2018.
-
Romer, P.S., et al. (2018), Cite This: Environ. Sci. Technol. 2018, 52, 13738−13746 pubs.acs.org/est Constraints on Aerosol Nitrate Photolysis as a Potential Source of HONO and NOx, Environ. Sci. Technol., doi:10.1021/acs.est.8b03861.
-
Wofsy, S., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, Ornl Daac, doi:10.3334/ORNLDAAC/1581.
-
Baier, B.C., et al. (2017), Higher measured than modeled ozone production at increased NOx levels in the Colorado Front Range, Atmos. Chem. Phys., 17, 11273-11292, doi:10.5194/acp-17-11273-2017.
-
Christian, K.E., et al. (2017), Global sensitivity analysis of the GEOS-Chem chemical transport model: ozone and hydrogen oxides during ARCTAS (2008), Atmos. Chem. Phys., 17, 3769-3784, doi:10.5194/acp-17-3769-2017.
-
Hu, W., et al. (2016), Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA), Atmos. Chem. Phys., 16, 11563-11580, doi:10.5194/acp-16-11563-2016.
-
Nault, B.A., et al. (2016), Observational Constraints on the Oxidation of NOx in the Upper Troposphere, J. Phys. Chem. A, 120, 1468-1478, doi:10.1021/acs.jpca.5b07824.
-
Peng, Z., et al. (2016), Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling, Atmos. Chem. Phys., 16, 4283-4305, doi:10.5194/acp-16-4283-2016.
-
Apel, E.C., et al. (2015), Upper tropospheric ozone production from lightning NOx-impacted convection: Smoke ingestion case study from the DC3 campaign, J. Geophys. Res., 120, 2505-2523, doi:10.1002/2014JD022121.
-
Baier, B.C., et al. (2015), Direct ozone production rate measurements and their use in assessing ozone source and receptor regions for Houston in 2013, Atmos. Environ., 114, 83-91, doi:10.1016/j.atmosenv.2015.05.033.
-
Barth, M.C., et al. (2015), The Deep Convective Clouds And Chemistry (Dc3) Field Campaign, Bull. Am. Meteorol. Soc., 1281-1310.
-
King, J.C., et al. (2015), Measurements of ClO and O3 from 21 N to 61 N in the Lower Stratosphere during February 1988: Implications for Heterogeneous Chemistry, Geophys. Res. Lett., 18.12, 2273-2276 (manuscript in preparation).
-
Liu, P., et al. (2015), Ultraviolet and visible complex refractive indices of secondary organic material produced by photooxidation of the aromatic compounds toluene and m-xylene, Atmos. Chem. Phys., 15, 1435-1446, doi:10.5194/acp-15-1435-2015.
-
Barth, M., et al. (2014), The Deep Convective Clouds and Chemistry (DC3) Field Campaign,, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-13-00290.1.
-
Browne, E.C., et al. (2013), Observations of total RONO2 over the boreal forest: NOx sinks and HNO3 sources, Atmos. Chem. Phys., 13, 4543-4562, doi:10.5194/acp-13-4543-2013.
-
Apel, E.C., et al. (2012), Impact of the deep convection of isoprene and other reactive trace species on radicals and ozone in the upper troposphere, Atmos. Chem. Phys., 12, 1135-1150, doi:10.5194/acp-12-1135-2012.
-
Liao, J., et al. (2012), Characterization of soluble bromide measurements and a case study of BrO observations during ARCTAS, Atmos. Chem. Phys., 12, 1327-1338, doi:10.5194/acp-12-1327-2012.
-
Olson, J.R., et al. (2012), An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE, Atmos. Chem. Phys., 12, 6799-6825, doi:10.5194/acp-12-6799-2012.
-
Ren, ., et al. (2012), Airborne intercomparison of HOx measurements using laser-induced fluorescence and chemical ionization mass spectrometry during ARCTAS, Atmos. Meas. Tech., 5, 2025-2037.
-
Cubison, M.J., et al. (2011), Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies, Atmos. Chem. Phys., 11, 12049-12064, doi:10.5194/acp-11-12049-2011.
-
Fried, A., et al. (2011), Detailed comparisons of airborne formaldehyde measurements with box models during the 2006 INTEX-B and MILAGRO campaigns: potential evidence for significant impacts of unmeasured and multi-generation volatile organic carbon compounds, Atmos. Chem. Phys., 11, 11867-11894, doi:10.5194/acp-11-11867-2011.
-
Kondo, Y., et al. (2011), Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008, J. Geophys. Res., 116, D08204, doi:10.1029/2010JD015152.
-
Liang, Q., et al. (2011), Reactive nitrogen, ozone and ozone production in the Arctic troposphere and the impact of stratosphere-troposphere exchange, Atmos. Chem. Phys., 11, 13181-13199, doi:10.5194/acp-11-13181-2011.
-
Adhikary, B., et al. (2010), A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign, Atmos. Chem. Phys., 10, 2091-2115, doi:10.5194/acp-10-2091-2010.
-
Adhikary, B., et al. (2010), Trans-Pacific transport and evolution of aerosols and trace gases from Asia during the INTEX-B field campaign, Atmos. Chem. Phys. Discuss., 10, 2091-2115.
-
Chatfield, R.B., et al. (2010), Controls on urban ozone production rate as indicated by formaldehyde oxidation rate and nitric oxide, Atmos. Environ., 44, 5395-5406, doi:10.1016/j.atmosenv.2010.08.056.
-
Choi, W., et al. (2010), Observations of elevated formaldehyde over a forest canopy suggest missing sources from rapid oxidation of arboreal hydrocarbons, Atmos. Chem. Phys., 10, 8761-8781, doi:10.5194/acp-10-8761-2010.
-
Emmons, L.K., et al. (2010), Impact of Mexico City emissions on regional air quality from MOZART-4 simulations, Atmos. Chem. Phys., 10, 6195-6212, doi:10.5194/acp-10-6195-2010.
-
Mao, J., et al. (2010), Chemistry of hydrogen oxide radicals (HOx) in the Arctic troposphere in spring, Atmos. Chem. Phys., 10, 5823-5838, doi:10.5194/acp-10-5823-2010.
-
Singh, H.B., et al. (2010), Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions, Atmos. Environ., 44, 4553-4564, doi:10.1016/j.atmosenv.2010.08.026.
-
Cooper, O.R., et al. (2009), Summertime buildup and decay of lightning NOx and aged thunderstorm outflow above North America, J. Geophys. Res., 114, D01101, doi:10.1029/2008JD010293.
-
Mao, J., et al. (2009), Airborne measurement of OH reactivity during INTEX-B, Atmos. Chem. Phys., 9, 163-173, doi:10.5194/acp-9-163-2009.
-
Perring, A.E., et al. (2009), Airborne observations of total RONO2: new constraints on the yield and lifetime of isoprene nitrates, Atmos. Chem. Phys., 9, 1451-1463, doi:10.5194/acp-9-1451-2009.
-
Singh, H.B., et al. (2009), Chemistry and transport of pollution over the Gulf of Mexico and the Pacific: Spring 2006 INTEX-B Campaign overview and first results, Atmos. Chem. Phys., 9, 2301-2318.
-
Fried, A., et al. (2008), Role of convection in redistributing formaldehyde to the upper troposphere over North America and the North Atlantic during the summer 2004 INTEX campaign, J. Geophys. Res., 113, D17306, doi:10.1029/2007JD009760.
-
Ren, ., et al. (2008), HOx chemistry during INTEX-A 2004: Observation, model calculation, and comparison with previous studies, J. Geophys. Res., 113, D05310, doi:10.1029/2007JD009166.
-
Cook, P.A., et al. (2007), 2007. Forest fire plumes over the North Atlantic: p-TOMCAT model simulations with aircraft and satellite measurements from the ITOP/ICARTT campaign, J. Geophys. Res., 112, D10S43, doi:10.1029/2006JD007563.
-
Hudman, ., et al. (2007), Surface and lightning sources of nitrogen oxides over the United States: Magnitudes, chemical evolution, and outflow, J. Geophys. Res., 112, D12S05, doi:10.1029/2006JD007912.
-
Kim, S., et al. (2007), Measurement of HO2NO2 in the free troposphere during the Intercontinental Chemical Transport Experiment–North America 2004, J. Geophys. Res., 112, D12S01, doi:10.1029/2006JD007676.
-
Liang, Q., et al. (2007), Summertime influence of Asian pollution in the free troposphere over North America, J. Geophys. Res., 112, D12S11, doi:10.1029/2006JD007919.
-
Cooper, O.R., et al. (2006), Large upper tropospheric ozone enhancements above midlatitude North America during summer: In situ evidence from the IONS and MOZAIC ozone measurement network, J. Geophys. Res., 111, D24S05, doi:10.1029/2006JD007306.
-
Singh, H.B., et al. (2006), Overview of the summer 2004 Intercontinental Chemical Transport Experiment -North America (INTEX-A), J. Geophys. Res., 111, D24S01, doi:10.1029/2006JD007905.
-
Thornton, ., et al. (2005), Variability of active chlorine in the lowermost Arctic stratosphere, J. Geophys. Res., 110, D22304, doi:10.1029/2004JD005580.
-
Thornton, B.F., et al. (2005), Mechanism of chlorine activation near the winter Arctic tropopause, J. Geophys. Res., 110, D22304, doi:10.1029/2004JD005580.
-
Faloona, I.C., et al. (2004), A laser-induced fluorescence instrument for detecting tropospheric OH and HO2: Characteristics and calibration, J. Atmos. Chem., 47, 139-167.
-
Browell, E., et al. (2003), Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring, J. Geophys. Res., 108, 8805.
-
Cantrell, C., et al. (2003), Peroxy radical behavior during the Transport and Chemical Evolution over the Pacific (TRACE-P) campaign as measured aboard the NASA P-3B aircraft, J. Geophys. Res., 108, 8797, doi:10.1029/2003JD003674.
-
Carmichael, G.R., et al. (2003), Regional-scale chemical transport modeling in support of the analysis of observations obtained during the TRACE-P experiment, J. Geophys. Res., 108, 8823, doi:10.1029/2002JD003117.
-
Crawford, J.H., et al. (2003), Clouds and trace gas distributions during TRACE-P, J. Geophys. Res., 108, 8818, doi:10.1029/2002JD003177.
-
Eisele, F., et al. (2003), Summary of measurement intercomparisons during TRACE-P, J. Geophys. Res., 108, 8791, doi:10.1029/2002JD003167.
-
Mari, C., et al. (2003), On the relative role of convection, chemistry, and transport over the south Pacific convergence zone during PEM-Tropics B: a case study, J. Geophys. Res., 108, 8232, doi:10.1029/2001JD001466.
-
Singh, H.B., et al. (2003), Oxygenated volatile organic chemicals in the oceans: Inferences and implications based on atmospheric observations and air-sea exchange models, Geophys. Res. Lett., 30, 1862, doi:10.1029/2003GL017933.
-
Newman, P.A., et al. (2002), An overview of the SOLVE/THESEO 2000 campaign, J. Geophys. Res., 107, 20.
-
Thornton, ., et al. (2002), Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume, J. Geophys. Res., 107, NO. D12, doi:10.1029/2001JD000932.
-
Wang, Y., et al. (2001), Factors controlling tropospheric O3, OH, NOx, and SO2 over the tropical Pacific during PEM-Tropics B, J. Geophys. Res., 106, 32733-32747.
-
Faloona, I., et al. (2000), Observations of HOX and its relationship with NOX in the upper troposphere during SONEX, J. Geophys. Res., 105, 3771-3783.
-
Jaeglé, L., et al. (2000), Photochemistry of HOx in the upper troposphere at northern midlatitudes, J. Geophys. Res., 105, 3877-3892.
-
Jaeglé, L., et al. (1999), Ozone production in the upper troposphere and the influence of aircraft during SONEX: Approach of NOx-saturated conditions, Geophys. Res. Lett., 26, 3081-3084.
-
Jaeglé, L., et al. (1999), Ozone production in the upper troposphere and the influence of aircraft during SONEX: Approach of NOx-saturated conditions, Geophys. Res. Lett., 26, 3081-3084.
-
Tuck, A.F., et al. (1997), The Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft (ASHOE/MAESA): A road map, J. Geophys. Res., 102.D3, 3901-3904.
-
Toohey, D.W., et al. (1991), In Situ Measurements of Midlatitude ClO in Winter, Geophys. Res. Lett., 18, 21-24.
-
Kawa, S.R., et al. (1990), Interpretation of Aircraft Measurements of NO, ClO, and O3 in the Lower Stratosphere, J. Geophys. Res., 95, 18,597-18.
-
McKenna, D.S., et al. (1990), Calculations of Ozone Destruction During the 1988/1989 Arctic Winter, Geophys. Res. Lett., 17, 553-556.
-
Toohey, D.W., et al. (1990), In situ Observations of BrO in the Arctic Stratosphere, Geophys. Res. Lett., 17, 513-516.
-
Anderson, J.G., and W.H. Brune (1989), Lloyd, D. W. Toohey, S. P. Sander, W. L. Starr, M. Loewenstein, and J. R. Podolske, J. Geophys. Res., 94, 11,480-11.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.