Organization
Jet Propulsion Laboratory
Email
Business Phone
(818) 354-4137
Mobile
(818) 319-0260
Business Address
Jet Propoulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109
United States
First Author Publications
-
Lebsock, M.D., and H. Su (2014), Application of active spaceborne remote sensing for understanding biases between passive cloud water path retrievals, J. Geophys. Res., 119, 8962-8979, doi:10.1002/2014JD021568.
-
Lebsock, M.D., et al. (2013), Microphysical implications of cloud-precipitation covariance derived from satellite remote sensing, J. Geophys. Res., 118, 6521-6533, doi:10.1002/jgrd.50347.
-
Lebsock, M.D., and T. L'Ecuyer (2011), The retrieval of warm rain from CloudSat, J. Geophys. Res., 116, D20209, doi:10.1029/2011JD016076.
-
Lebsock, M.D., et al. (2011), Detecting the Ratio of Rain and Cloud Water in Low-Latitude Shallow Marine Clouds, J. Appl. Meteor. Climat., 50, 419-432, doi:10.1175/2010JAMC2494.1.
-
Lebsock, M.D., et al. (2008), Multisensor satellite observations of aerosol effects on warm clouds, J. Geophys. Res., 113, D15205, doi:10.1029/2008JD009876.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Stephens, G., et al. (2024), Cloudsat And Calipso Within The A-Train: Ten Years of Actively Observing the Earth System, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-16-0324.1.
-
Richardson, M., et al. (2020), A new OCO-2 cloud flagging and rapid retrieval of marine boundary layer cloud properties, Atmos. Meas. Tech., doi:10.5194/amt-2020-140.
-
Richardson, M., et al. (2019), Marine liquid cloud geometric thickness retrieved from OCO-2’s oxygen A-band spectrometer, Atmos. Meas. Tech., 12, 1717-1737, doi:10.5194/amt-12-1717-2019.
-
Naud, C.M., et al. (2018), Observational Constraint for Precipitation in Extratropical Cyclones: Sensitivity to Data Sources, J. Appl. Meteor. Climat., 57, 991-1009, doi:10.1175/JAMC-D-17-0289.1.
-
Stephens, G.L., et al. (2018), Regional Intensification of the Tropical Hydrological Cycle During ENSO, Geophys. Res. Lett., 45, 4361-4370, doi:10.1029/2018GL077598.
-
Kahn, B., et al. (2017), An A-train and MERRA view of cloud, thermodynamic, and dynamic variability within the subtropical marine boundary layer, Atmos. Chem. Phys., 17, 9451-9468, doi:10.5194/acp-17-9451-2017.
-
Behrangi, A., et al. (2016), Status of high-latitude precipitation estimates from observations and reanalyses, J. Geophys. Res., 121, 4468-4486, doi:10.1002/2015JD024546.
-
Christensen, M.W., et al. (2016), Datasets: Arctic Observation and Reanalysis Integrated System A New Data Product for Validation and Climate Study, Bull. Am. Meteorol. Soc., 907-915, doi:10.1175/BAMS-D-14-00273.1.
-
Leinonen, J.S., et al. (2016), Interregional differences in MODIS-derived cloud regimes, J. Geophys. Res., 121, doi:10.1002/2016JD025193.
-
Mace, G.G., et al. (2016), Retrieving co-occurring cloud and precipitation properties of warm marine boundary layer clouds with A-Train data, J. Geophys. Res., 121, 4008-4033, doi:10.1002/2015JD023681.
-
Rapp, A., et al. (2016), Low cloud precipitation climatology in the southeastern Pacific marine stratocumulus region using CloudSat, This content was downloaded on 11/08/2016 at, 22, 10-20, doi:10.1088/1748-9326/8/1/014027.
-
Cho, H., et al. (2015), Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans, J. Geophys. Res., 120, doi:10.1002/2015JD023161.
-
Behrangi, A., et al. (2014), An Update on the Oceanic Precipitation Rate and Its Zonal Distribution in Light of Advanced Observations from Space, J. Climate, 27, 3957-3965, doi:10.1175/JCLI-D-13-00679.1.
-
Kalmus, P., et al. (2014), Observational Boundary Layer Energy and Water Budgets of the Stratocumulus-to-Cumulus Transition, J. Climate, 27, 9155-9170, doi:10.1175/JCLI-D-14-00242.1.
-
Millán, L., et al. (2014), Differential absorption radar techniques: surface pressure, Atmos. Meas. Tech., 7, 3959-3970, doi:10.5194/amt-7-3959-2014.
-
Smalley, M., et al. (2014), A Comparison of Precipitation Occurrence from the NCEP Stage IV QPE Product and the CloudSat Cloud Profiling Radar, J. Hydrometeorology, 15, 444-458, doi:10.1175/JHM-D-13-048.1.
-
Christensen, M.W., et al. (2013), Exposing biases in retrieved low cloud properties from CloudSat: A guide for evaluating observations and climate data, J. Geophys. Res., 118, 12120-12131, doi:10.1002/2013JD020224.
-
Suzuki, K., et al. (2013), Aerosol effect on the warm rain formation process: Satellite observations and modeling, J. Geophys. Res., 118, 170-184, doi:10.1002/jgrd.50043.
-
Behrangi, A., et al. (2012), On the quantification of oceanic rainfall using spaceborne sensors, J. Geophys. Res., 117, D20105, doi:10.1029/2012JD017979.
-
Boening, C., et al. (2012), Snowfall-driven mass change on the East Antarctic ice sheet, Geophys. Res. Lett., 39, L21501, doi:10.1029/2012GL053316.
-
Stephens, G.L., et al. (2012), An update on Earth’s energy balance in light of the latest global observations, Nature Geoscience, 5, 691-696, doi:10.1038/NGEO1580.
-
Wood, R., et al. (2012), Precipitation driving of droplet concentration variability in marine low clouds, J. Geophys. Res., 117, D19210, doi:10.1029/2012JD018305.
-
Sorooshian, A., et al. (2010), Deconstructing the precipitation susceptibility construct: Improving methodology for aerosol‐cloud precipitation studies, J. Geophys. Res., 115, D17201, doi:10.1029/2009JD013426.
-
L'Ecuyer, T., et al. (2009), Global observations of aerosol impacts on precipitation occurrence in warm maritime clouds, J. Geophys. Res., 114, D09211, doi:10.1029/2008JD011273.
-
Sorooshian, A., et al. (2009), On the precipitation susceptibility of clouds to aerosol perturbations, Geophys. Res. Lett., 36, L13803, doi:10.1029/2009GL038993.
-
Stephens, G., et al. (2008), CloudSat mission: Performance and early science after the first year of operation, J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.