Organization
NASA Langley Research Center
Science Systems and Applications, Inc.
Email
Business Phone
Work
(757) 864-4278
Mobile
(757) 869-2109
Fax
(757) 864-5841
Business Address
MS 483
Hampton, VA 23681
United States
First Author Publications
-
Thornhill, K.L., et al. (2008), The impact of local sources and long-range transport on aerosol properties over the northeast U.S. region during INTEX-NA, J. Geophys. Res., 113, D08201, doi:10.1029/2007JD008666.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Crosbie, E.C., et al. (2024), Measurement report: Cloud and environmental properties associated with aggregated shallow marine cumulus and cumulus congestus, Atmos. Chem. Phys., doi:10.5194/acp-24-6123-2024.
-
Dmitrovic, S., et al. (2024), High Spectral Resolution Lidar – generation 2 (HSRL-2) retrievals of ocean surface wind speed: methodology and evaluation, Atmos. Meas. Tech., 17, 3515-3532, doi:10.5194/amt-17-3515-2024.
-
Li, X., et al. (2024), Process Modeling of Aerosol‐Cloud Interaction in Summertime Precipitating Shallow Cumulus Over the Western North Atlantic, J. Geophys. Res., 129, e2023JD039489, doi:10.1029/2023JD039489.
-
Schlosser, J.S., et al. (2024), Maximizing the Volume of Collocated Data from Two Coordinated Suborbital Platforms, J. Atmos. Oceanic Technol., 41, 189-201, doi:10.1175/JTECH-D-23-0001.1.
-
Xu, Y., et al. (2024), Boundary Layer Structures Over the Northwest Atlantic Derived From Airborne High Spectral Resolution Lidar and Dropsonde Measurements During the ACTIVATE Campaign, J. Geophys. Res., 129, e2023JD039878, doi:10.1029/2023JD039878.
-
Corral, A., et al. (2023), Environmental Science: Atmospheres View Article Online PAPER View Journal Dimethylamine in cloud water: a case study over, The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Atmos, 10.1039/D2EA00117A, doi:10.1039/d2ea00117a.
-
Ferrare, R.A., et al. (2023), Airborne HSRL-2 measurements of elevated aerosol depolarization associated with non-spherical sea salt, TYPE Original Research, doi:10.3389/frsen.2023.1143944.
-
June, N.A., et al. (2023), Aerosol size distribution changes in FIREX-AQ biomass burning plumes: the impact of plume concentration on coagulation and OA condensation/evaporation, Atmos. Chem. Phys., doi:10.5194/acp-22-12803-2022.
-
Li, X., et al. (2023), Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part II: Aerosol–Meteorology–Cloud Interaction, J. Atmos. Sci., 80, 1025-1045, doi:10.1175/JAS-D-21-0324.1.
-
Rickly, P., et al. (2023), Emission factors and evolution of SO2 measured from biomass burning in wildfires and agricultural fires, Atmos. Chem. Phys., doi:10.5194/acp-22-15603-2022.
-
Saide Peralta, P.E., et al. (2023), Understanding the Evolution of Smoke Mass Extinction Efficiency Using Field Campaign Measurements, Geophys. Res. Lett., 49, e2022GL099175, doi:10.1029/2022GL099175.
-
Sorooshian, A., et al. (2023), Spatially coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: the NASA ACTIVATE dataset, Earth Syst. Sci. Data, 15, 3419-3472, doi:10.5194/essd-15-3419-2023.
-
Vömel, H.1.✉., et al. (2023), OPEN Dropsonde observations during Data Descriptor the Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment, Nature, doi:10.1038/s41597-023-02647-5.
-
Corral, A., et al. (2022), Cold Air Outbreaks Promote New Particle Formation Off the U.S. East Coast, Geophys. Res. Lett..
-
Dadashazar, H., et al. (2022), Organic enrichment in droplet residual particles relative to out of cloud over the northwestern Atlantic: analysis of airborne ACTIVATE data, Atmos. Chem. Phys., doi:10.5194/acp-22-13897-2022.
-
Dadashazar, H., et al. (2022), Analysis of MONARC and ACTIVATE Airborne Aerosol Data for Aerosol-Cloud Interaction Investigations: Efficacy of Stairstepping Flight Legs for Airborne In Situ Sampling, hosseind@arizona.edu (H.D.armin@arizona.edu (A.S., 13, 1242, doi:10.3390/atmos13081242.
-
Kirschler, S., et al. (2022), Seasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic, Atmos. Chem. Phys., doi:10.5194/acp-22-8299-2022.
-
Peterson, D.A., et al. (2022), Measurements from inside a Thunderstorm Driven by Wildfire: The 2019 FIREX-AQ Field Experiment, Bull. Amer. Meteor. Soc., 103, E2140-E2167, doi:10.1175/BAMS-D-21-0049.1.
-
Saide Peralta, P.E., et al. (2022), Understanding the Evolution of Smoke Mass Extinction Efficiency Using Field Campaign Measurements, Geophys. Res. Lett., 49, e2022GL099175, doi:10.1029/2022GL099175.
-
Sanchez, K., et al. (2022), North Atlantic Ocean SST-gradient-driven variations in aerosol and cloud evolution along Lagrangian cold-air outbreak trajectories, Atmos. Chem. Phys., 22, 2795-2815, doi:10.5194/acp-22-2795-2022.
-
Schlosser, J.S., et al. (2022), Polarimeter + Lidar–Derived Aerosol Particle Number Concentration, Front. Remote Sens., 3, 885332, doi:10.3389/frsen.2022.885332.
-
Decker, Z.D.-.N., et al. (2021), Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data, Atmos. Chem. Phys., 21, 16293-16317, doi:10.5194/acp-21-16293-2021.
-
Sanchez, K., et al. (2021), Linking marine phytoplankton emissions, meteorological processes, and downwind particle properties with FLEXPART, Atmos. Chem. Phys., 21, 831-851, doi:10.5194/acp-21-831-2021.
-
Wiggins, E.B., et al. (2021), Reconciling assumptions in bottom-up and top-down approaches for estimating aerosol emission rates from wildland fires using observations from FIREX-AQ, J. Geophys. Res., 126, e2021JD035692, doi:10.1029/2021JD035692.
-
Hannun, R.A., et al. (2020), Spatial heterogeneity in CO2, CH4, and energy fluxes: insights from airborne eddy covariance measurements over the Mid-Atlantic region, Environmental Research Letters., 15, 035008, doi:10.1088/1748-9326/ab7391.
-
Kacarab, M.E., et al. (2020), Biomass Burning Aerosol as a Modulator of Droplet Number in the Southeast Atlantic Region, Atmos. Chem. Phys., 20, 3029-3040, doi:10.5194/acp-20-3029-2020.
-
Lamb, K.D., et al. (2018), Estimating Source Region Influences on Black Carbon Abundance, Microphysics, and Radiative Effect Observed Over South Korea, J. Geophys. Res., 123, 13,527-13,548, doi:10.1029/2018JD029257.
-
Segal-Rozenhaimer, M., et al. (2018), Bias and Sensitivity of Boundary Layer Clouds and Surface Radiative Fluxes in MERRA-2 and Airborne Observations Over the Beaufort Sea During the ARISE Campaign, J. Geophys. Res., 123, 6565-6580, doi:10.1029/2018JD028349.
-
Wolfe, G.M., et al. (2018), The NASA Carbon Airborne Flux Experiment (CARAFE): instrumentation and methodology, Atmos. Meas. Tech., 11, 1757-1776, doi:10.5194/amt-11-1757-2018.
-
Smith, W.L., et al. (2017), Arctic Radiation-Icebridge Sea And Ice Experiment: The Arctic Radiant Energy System during the Critical Seasonal Ice Transition, Bull. Am. Meteorol. Soc., 1399-1426, doi:10.1175/BAMS-D-14-00277.1.
-
Beyersdorf, A., et al. (2016), The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore–Washington, D.C. region, Atmos. Chem. Phys., 16, 1003-1015, doi:10.5194/acp-16-1003-2016.
-
Corr, C.A., et al. (2016), Observational evidence for the convective transport of dust over the Central United States, J. Geophys. Res., 121, doi:10.1002/2015JD023789.
-
Müller, M., et al. (2016), In situ measurements and modeling of reactive trace gases in a small biomass burning plume, Atmos. Chem. Phys., 16, 3813-3824, doi:10.5194/acp-16-3813-2016.
-
Shingler, T., et al. (2016), Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5km during the SEAC4RS campaign, J. Geophys. Res., 121, 4188-4210, doi:10.1002/2015JD024498.
-
Shinozuka, Y., et al. (2015), The relationship between cloud condensation nuclei (CCN) concentration and light extinction of dried particles: indications of underlying aerosol processes and implications for satellite-based CCN estimates, Atmos. Chem. Phys., 15, 7585-7604, doi:10.5194/acp-15-7585-2015.
-
Crumeyrolle, S., et al. (2014), Factors that influence surface PM2.5 values inferred from satellite observations: perspective gained for the US Baltimore–Washington metropolitan area during DISCOVER-AQ, Atmos. Chem. Phys., 14, 2139-2153, doi:10.5194/acp-14-2139-2014.
-
Eck, T.F., et al. (2014), Observations of rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds, Atmos. Chem. Phys., 14, 11633-11656, doi:10.5194/acp-14-11633-2014.
-
Liu, J., et al. (2014), Brown carbon in the continental troposphere, Geophys. Res. Lett., 41, 2191-2195, doi:10.1002/2013GL058976.
-
Sawamura, P., et al. (2014), Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar data set – DISCOVER-AQ 2011, Atmos. Meas. Tech., 7, 3095-3112, doi:10.5194/amt-7-3095-2014.
-
Schafer, J.S., et al. (2014), Intercomparison of aerosol single-scattering albedo derived from AERONET surface radiometers and LARGE in situ aircraft profiles during the 2011 DRAGON-MD and DISCOVER-AQ experiments, J. Geophys. Res., 119, 7439-7452.
-
Ziemba, L.D., et al. (2013), Airborne observations of aerosol extinction by in situ and remote-sensing techniques: Evaluation of particle hygroscopicity, Geophys. Res. Lett., 40, 417-422, doi:10.1029/2012GL054428.
-
McHaughton, C.S., et al. (2011), Absorbing aerosols in the troposphere of the Western Arctic during the 2008 ACTAS/ARCPAC airborne field campaigns, Atmos. Chem. Phys., 11, 7561-7582, doi:10.5194/acp-11-7515-2011.
-
Vay, S., et al. (2003), Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific, J. Geophys. Res., 108, 8801, doi:10.1029/2002JD003094.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.