Retrieval of volcanic and man-made stratospheric aerosols from orbital...

Mishchenko, M., J. M. Dlugach, A. Lacis, L. D. Travis, and B. Cairns (2019), Retrieval of volcanic and man-made stratospheric aerosols from orbital polarimetric measurements, Optics Express, 27, A158, doi:10.1364/OE.27.00A158.
Abstract: 

Stratospheric aerosols that are caused by a major volcanic eruption can serve as a valuable test of global climate models, as well as severely complicate tropospheric-aerosol monitoring from space. In either case, it is highly desirable to have accurate global information on the optical thickness, size, and composition of volcanic aerosols. We report sensitivity study results, which reveal the implications of making precise multi-angle photopolarimetric measurements in a 1.378-μm spectral channel residing within a strong water-vapor absorption band. We demonstrate that, under favorable conditions, such measurements would enable near-perfect retrievals of the optical thickness, effective radius, and refractive index of stratospheric aerosols. Besides enabling accurate retrievals of volcanic aerosols, such measurements can also be used to monitor man-made particulates injected in the stratosphere for geoengineering purposes.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)
Mission: 
ACCP