Organization
National Center for Atmospheric Research
Email
Business Address
Boulder, CO
United States
First Author Publications
-
Tilmes, S., et al. (2019), Climate Forcing and Trends of Organic Aerosols in the Community Earth System Model (CESM2), J. Adv. Modeling Earth Syst., 11, 4323-4351, doi:10.1029/2019MS001827.
-
Tilmes, S., et al. (2012), Impact of very short-lived halogens on stratospheric ozone abundance and UV radiation in a geo-engineered atmosphere, Atmos. Chem. Phys., 12, 10945-10955, doi:10.5194/acp-12-10945-2012.
-
Tilmes, S., et al. (2011), Source contributions to Northern Hemisphere CO and black carbon during spring and summer 2008 from POLARCAT and START08/preHIPPO observations and MOZART-4, Atmos. Chem. Phys. Discuss., 11, 5935-5983, doi:10.5194/acpd-11-5935-2011.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Jo, D., et al. (2023), Global Health and Climate Effects of Organic Aerosols from Different Sources, Environ. Sci. Technol., 57, 13793-13807, doi:10.1021/acs.est.3c02823.
-
Tang, W., et al. (2023), Application of the Multi-Scale Infrastructure for Chemistry and Aerosols version 0 (MUSICAv0) for air quality research in Africa, Geosci. Model. Dev., doi:10.5194/gmd-16-6001-2023.
-
Schwantes, R., et al. (2022), Evaluating the Impact of Chemical Complexity and Horizontal Resolution on Tropospheric Ozone Over the Conterminous US With a Global Variable Resolution Chemistry Model, J. Adv. Modeling Earth Syst., 14, e2021MS002889, doi:10.1029/2021MS002889.
-
Tang, W., et al. (2022), Effects of Fire Diurnal Variation and Plume Rise on U.S. Air Quality During FIREX-AQ and WE-CAN Based on the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0), J. Geophys. Res., 127, e2022JD036650, doi:10.1029/2022JD036650.
-
Jo, D.S., et al. (2021), Future changes in isoprene-epoxydiol-derived secondary organic aerosol (IEPOX SOA) under the Shared Socioeconomic Pathways: the importance of physicochemical dependency, Atmos. Chem. Phys., 21, 3395-3425, doi:10.5194/acp-21-3395-2021.
-
Park, M., et al. (2021), Fate of Pollution Emitted During the 2015 Indonesian Fire Season, J. Geophys. Res., 126, e2020JD033474, doi:10.1029/2020JD033474.
-
Gaubert, B., et al. (2020), Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ, Atmos. Chem. Phys., 20, 14617-14647, doi:10.5194/acp-20-14617-2020.
-
Hodzic, A.H., et al. (2020), Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models, Atmos. Chem. Phys., 20, 4607-4635, doi:10.5194/acp-20-4607-2020.
-
Veres, P., et al. (2020), Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere, Proc. Natl. Acad. Sci., 117, doi:10.1073/pnas.1919344117.
-
Wang, S., et al. (2020), Global Atmospheric Budget of Acetone: Air‐Sea Exchange and the Contribution to Hydroxyl Radicals, J. Geophys. Res., 125, e2020JD032553, doi:10.1029/2020JD032553.
-
Asher, L., et al. (2019), Novel approaches to improve estimates of short-lived halocarbon emissions during summer from the Southern Ocean using airborne observations, Atmos. Chem. Phys., 19, 14071-14090, doi:10.5194/acp-19-14071-2019.
-
Tang, W., et al. (2019), Source Contributions to Carbon Monoxide Concentrations During KORUS‐AQ Based on CAM‐chem Model Applications, J. Geophys. Res..
-
Wang, S., et al. (2019), Atmospheric Acetaldehyde: Importance of Air‐Sea Exchange and a Missing Source in the Remote Troposphere, Geophys. Res. Lett., 46, doi:10.1029/2019GL082034.
-
Wang, S., et al. (2019), Ocean Biogeochemistry Control on the Marine Emissions of Brominated Very Short‐Lived Ozone‐Depleting Substances: A Machine‐Learning Approach, J. Geophys. Res., 124, doi:10.1029/2019JD031288.
-
Gaubert, B., et al. (2017), Chemical Feedback From Decreasing Carbon Monoxide Emissions, Geophys. Res. Lett., 44, https, doi:.org/10.1002/.
-
Gaubert, B., et al. (2016), Toward a chemical reanalysis in a coupled chemistry-climate model: An evaluation of MOPITT CO assimilation and its impact on tropospheric composition, J. Geophys. Res., 121, 7310-7343, doi:10.1002/2016JD024863.
-
Arnold, S.R., et al. (2015), Biomass burning influence on high-latitude tropospheric ozone and reactive nitrogen in summer, Atmos. Chem. Phys., 15, 6047-6068, doi:10.5194/acp-15-6047-2015.
-
Emmons, L., et al. (2015), The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations, Atmos. Chem. Phys., 15, 6721-6744, doi:10.5194/acp-15-6721-2015.
-
Monks, S.A., et al. (2015), Multi-model study of chemical and physical controls on transport of anthropogenic and biomass burning pollution to the Arctic, Atmos. Chem. Phys., 15, 3575-3603, doi:10.5194/acp-15-3575-2015.
-
Saiz-Lopez, A., et al. (2014), Iodine chemistry in the troposphere and its effect on ozone, Atmos. Chem. Phys., 14, 13119-13143, doi:10.5194/acp-14-13119-2014.
-
Tsigaridis, K., et al. (2014), The AeroCom evaluation and intercomparison of organic aerosol in global models, Atmos. Chem. Phys., 14, 10845-10895, doi:10.5194/acp-14-10845-2014.
-
Brakebusch, M., et al. (2013), Evaluation of Whole Atmosphere Community Climate Model simulations of ozone during Arctic winter 2004–2005, J. Geophys. Res., 118, 2673-2688, doi:10.1002/jgrd.50226.
-
Choi, S., et al. (2012), Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC, Atmos. Chem. Phys., 12, 1255-1285, doi:10.5194/acp-12-1255-2012.
-
Ordóñez, C., et al. (2012), Bromine and iodine chemistry in a global chemistry-climate model: description and evaluation of very short-lived oceanic sources, Atmos. Chem. Phys., 12, 1423-1447, doi:10.5194/acp-12-1423-2012.
-
Saiz-Lopez, A., et al. (2012), Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere, Atmos. Chem. Phys., 12, 3939-3949, doi:10.5194/acp-12-3939-2012.
-
Thompson, A.M., et al. (2012), Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone climatology (2005–2009): Tropospheric and tropical tropopause layer (TTL) profiles with comparisons to OMI-based ozone products, J. Geophys. Res., 117, D23301, doi:10.1029/2011JD016911.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.