Organization
NASA Goddard Space Flight Center
Email
Business Address
Global Modeling and Assimilation Office
Code 610.1
Greenbelt, MD 20771
United States
Co-Authored Publications
-
Keller, C.A., et al. (2021), Description of the NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0, J. Adv. Modeling Earth Syst..
-
Garfinkel, C.I., et al. (2018), Nonlinear response of tropical lower-stratospheric temperature and water vapor to ENSO, Atmos. Chem. Phys., 18, 4597-4615, doi:10.5194/acp-18-4597-2018.
-
Hu, L., et al. (2018), Global simulation of tropospheric chemistry at 12.5 km resolution: performance and evaluation of the GEOS-Chem chemical module (v10-1) within the NASA GEOS Earth system model (GEOS-5 ESM), Geosci. Model. Dev., 11, 4603-4620, doi:10.5194/gmd-11-4603-2018.
-
Li, F., et al. (2018), Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960–2010, J. Geophys. Res., 123, doi:https://doi.org/10.1002/2017JD027562.
-
Holt, ., et al. (2017), An evaluation of gravity waves and gravity wave sources in the Southern Hemisphere in a 7 km global climate simulation, Q. J. R. Meteorol. Soc., 143, 2481-2495, doi:10.1002/qj.3101.
-
Li, F., et al. (2016), Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System, Version 5 (GEOS-5), J. Climate, 29, 3199-3218, doi:10.1175/JCLI-D-15-0572.1.
-
Ott, L., et al. (2015), Assessing the magnitude of CO2 flux uncertainty in atmospheric CO2 records using products from NASA’s Carbon Monitoring Flux Pilot Project, J. Geophys. Res., 120, 734-765, doi:10.1002/2014JD022411.
-
Wargan, K., et al. (2015), The global structure of upper troposphere-lower stratosphere ozone in GEOS-5: A multiyear assimilation of EOS Aura data, J. Geophys. Res., 120, 2013-2036, doi:10.1002/2014JD022493.
-
Duncan, B., et al. (2014), Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid, Atmos. Environ., 94, 647-662, doi:10.1016/j.atmosenv.2014.05.061.
-
Liu, J., et al. (2014), Carbon monitoring system flux estimation and attribution: impact of ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric sources and sinks, Tellus, 66, 22486, doi:10.3402/tellusb.v66.22486.
-
Ziemke, J.R., et al. (2014), Assessment and applications of NASA ozone data products derived from Aura OMI/MLS satellite measurements in context of the GMI chemical transport model, J. Geophys. Res., 119, 5671-5699, doi:10.1002/2013JD020914.
-
Li, F., et al. (2012), Seasonal variations of stratospheric age spectra in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM), J. Geophys. Res., 117, D05134, doi:10.1029/2011JD016877.
-
Parazoo, N.C., et al. (2012), CO2 flux estimation errors associated with moist atmospheric processes, Atmos. Chem. Phys., 12, 6405-6416, doi:10.5194/acp-12-6405-2012.
-
Allen, D.R., et al. (2011), Modeling the Frozen-In Anticyclone in the 2005 Arctic Summer Stratosphere, Atmos. Chem. Phys., 11, 4557-4576, doi:10.5194/acp-11-4557-2011.
-
Liang, Q., et al. (2011), Reactive nitrogen, ozone and ozone production in the Arctic troposphere and the impact of stratosphere-troposphere exchange, Atmos. Chem. Phys., 11, 13181-13199, doi:10.5194/acp-11-13181-2011.
-
Strahan, S., et al. (2011), Using transport diagnostics to understand chemistry climate model ozone simulations, J. Geophys. Res., 116, D17302, doi:10.1029/2010JD015360.
-
Wang, J., et al. (2011), El Niño–Southern Oscillation in Tropical and Midlatitude Column Ozone, J. Atmos. Sci., 68, 1911-1921, doi:10.1175/JAS-D-11-045.1.
-
Ott, L., et al. (2010), Influence of the 2006 Indonesian biomass burning aerosols on tropical dynamics studied with the GEOS‐5 AGCM, J. Geophys. Res., 115, D14121, doi:10.1029/2009JD013181.
-
Salawitch, R.J., et al. (2010), A new interpretation of total column BrO during Arctic spring, Geophys. Res. Lett., 37, L21805, doi:10.1029/2010GL043798.
-
Newman, P.A., et al. (2009), What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?, Atmos. Chem. Phys., 9, 2113-2128, doi:10.5194/acp-9-2113-2009.
-
Ott, L., et al. (2009), Analysis of convective transport and parameter sensitivity in a single column version of the Goddard Earth Observation System, Version 5, General Circulation Model, J. Atmos. Sci., 66, doi:10.1175/2008JAS2694.1.
-
Wang, H., et al. (2009), Error correlation between CO2 and CO as constraint for CO2 flux inversions using satellite data, Atmos. Chem. Phys., 9, 7313-7323, doi:10.5194/acp-9-7313-2009.
-
Schoeberl, M.R., et al. (2008), Comparison of lower stratospheric tropical mean vertical velocities, J. Geophys. Res., 113, D24109, doi:10.1029/2008JD010221.
-
Miller, C.E., et al. (2007), Precision requirements for space-based XCO2 data, J. Geophys. Res., 112, D10314, doi:10.1029/2006JD007659.
-
Bian, H., et al. (2006), A test of sensitivity to convective transport in a global atmospheric CO2 simulation, Tellus, 58B, 463-475, doi:10.1111/j.1600-0889.2006.00212.x.
-
Morris, G.A., et al. (2006), Alaskan and Canadian forest fires exacerbate ozone pollution over Houston, Texas, on 19 and 20 July 2004, J. Geophys. Res., 111, D24S03, doi:10.1029/2006JD007090.
-
Crisp, D., et al. (2004), The Orbiting Carbon Observatory (OCO) mission, Advances in Space Research, 34, 700-709, doi:10.1016/j.asr.2003.08.062.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.