Organization
Texas A&M University
Email
Business Address
Department of Atmospheric Sciences
College Station, TX 77843
United States
First Author Publications
-
Yang, P., et al. (2019), On the convergence of numerical computations for both exact and approximate solutions for electromagnetic scattering by nonspherical dielectric particles, Progress In Electromagnetics Research, 164, 27-61.
-
Yang, P., et al. (2018), Preface: Electromagnetic and light scattering by nonspherical particles XVII, J. Quant. Spectrosc. Radiat. Transfer, 221, A1-A3, doi:10.1016/j.jqsrt.2018.08.032.
-
Yang, P., et al. (2018), Preface: Electromagnetic and light scattering by nonspherical particles XVII, J. Quant. Spectrosc. Radiat. Transfer, 221, A1-A3, doi:10.1016/j.jqsrt.2018.08.032.
-
Yang, P., et al. (2013), Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 µm to 100 µm, J. Atmos. Sci., 70, 330-347, doi:10.1175/JAS-D-12-039.1.
-
Yang, P., et al. (2011), Notes Dependence of extinction cross-section on incident polarization state and particle orientation, J. Quant. Spectrosc. Radiat. Transfer, 112, 2035-2039, doi:10.1016/j.jqsrt.2011.04.012.
-
Yang, P., et al. (2010), Contrails And Induced Cirrus: Optics and Radiation, Bull. Am. Meteorol. Soc., 473-478.
-
Yang, P., et al. (2008), Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part I. Single-scattering properties of ice crystals with surface roughness, IEEE Trans. Geosci. Remote Sens., 46, 1940-1947, doi:10.1109/TGRS.2008.916471.
-
Yang, P., et al. (2008), Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part II. Effect of particle surface roughness on retrieved cloud optical thickness and effective particle size, IEEE Trans. Geosci. Remote Sens., 46, 1948-1957, doi:10.1109/TGRS.2008.916472.
-
Yang, P., et al. (2008), Effect of Cavities on the Optical Properties of Bullet Rosettes: Implications for Active and Passive Remote Sensing of Ice Cloud Properties, J. Appl. Meteor. Climat., 47, 2311-2330, doi:10.1175/2008JAMC1905.1.
-
Yang, P., et al. (2007), Differences Between Collection 4 and 5 MODIS Ice Cloud Optical/Microphysical Products and Their Impact on Radiative Forcing Simulations, IEEE Trans. Geosci. Remote Sens., 45, 2886-2899, doi:10.1109/TGRS.2007.898276.
-
Yang, P., et al. (2005), Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region, Appl. Opt., 44, 5512-5523.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Ren, T., et al. (2024), On the Consistency of Ice Cloud Optical Models for Spaceborne Remote Sensing Applications and Broadband Radiative Transfer Simulations, J. Geophys. Res..
-
Li, D., et al. (2023), On the Scattering-Angle Dependence of the Spectral Consistency of Ice Cloud Optical Thickness Retrievals Based on Geostationary Satellite Observations, IEEE Trans. Geosci. Remote Sens., 61, 4108012, doi:10.1109/TGRS.2023.3331970.
-
Minnis, P., et al. (2023), VIIRS Edition 1 Cloud Properties for CERES, Part 1: Algorithm Adjustments and Results, Algorithm Adjustments and Results. Remote Sens., 15, 578, doi:10.3390/rs15030578.
-
Chen, X., et al. (2022), Analytical Prediction of Scattering Properties of Spheroidal Dust Particles With Machine Learning, Geophys. Res. Lett., 49, e2021GL097548, doi:10.1029/2021GL097548.
-
Minnis, P., et al. (2021), CERES MODIS Cloud Product Retrievals for Edition 4—Part I: Algorithm Changes, IEEE Trans. Geosci. Remote Sens., 59, 2744-2780, doi:10.1109/TGRS.2020.3008866.
-
Bi, L., et al. (2020), Preface, Electromagnetic and light scattering by nonspherical particles XVIII, J. Quant. Specrosc. Radiat. Transfer, 245, 106820, doi:10.1016/j.jqsrt.2019.106820.
-
Bi, L., et al. (2020), Preface, Electromagnetic and light scattering by nonspherical particles XVIII, J. Quant. Specrosc. Radiat. Transfer, 245, 106820, doi:10.1016/j.jqsrt.2019.106820.
-
Saito, M., et al. (2019), An Efficient Method for Microphysical Property Retrievals in Vertically Inhomogeneous Marine Water Clouds Using MODIS‐ CloudSat Measurements, J. Geophys. Res., 124, 2174-2193, doi:10.1029/2018JD029659.
-
Loeb, N., et al. (2018), Impact of Ice Cloud Microphysics on Satellite Cloud Retrievals and Broadband Flux Radiative Transfer Model Calculations, J. Climate, 31, 1851-1864, doi:10.1175/JCLI-D-17-0426.1.
-
Mishchenko, M., and P. Yang (2018), Far-field Lorenz–Mie scattering in an absorbing host medium: Theoretical formalism and FORTRAN program, J. Quant. Spectrosc. Radiat. Transfer, 205, 241-252, doi:10.1016/j.jqsrt.2017.10.014.
-
Song, Q., et al. (2018), Net radiative effects of dust in the tropical North Atlantic based on integrated satellite observations and in situ measurements, Atmos. Chem. Phys., 18, 11303-11322, doi:10.5194/acp-18-11303-2018.
-
Brasseur, G.P., et al. (2017), Impact of Aviation: FAA's Aviation Climate Change Research Initiative (ACCRI) Phase II, Bull. Am. Meteorol. Soc., 98, 561-583, doi:10.1175/BAMS-D-13-00089.1.
-
Ding, J., et al. (2017), Validation of quasi-invariant ice cloud radiative quantities with MODIS satellite-based cloud property retrievals, J. Quant. Spectrosc. Radiat. Transfer, 194, 47-57, doi:10.1016/j.jqsrt.2017.03.025.
-
Mishchenko, M., et al. (2017), Extinction by a homogeneous spherical particle in an absorbing medium, Optics Letters, 42, 4873-4876.
-
Platnick, S., et al. (2017), The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua, IEEE Trans. Geosci. Remote Sens., 55, 502-525, doi:10.1109/TGRS.2016.2610522.
-
Saito, M., et al. (2017), Ice particle morphology and microphysical properties of cirrus clouds inferred from combined CALIOP-IIR measurements, J. Geophys. Res., 122, 4440-4462, doi:10.1002/2016JD026080.
-
Yi, B., et al. (2017), A comparison of Aqua MODIS ice and liquid water cloud physical and optical properties between collection 6 and collection 5.1: Cloud radiative effects, J. Geophys. Res., 122, 4550-4564, doi:10.1002/2016JD025654.
-
Yi, B., et al. (2017), A comparison of Aqua MODIS ice and liquid water cloud physical and optical properties between collection 6 and collection 5.1: Pixel-to-pixel comparisons, J. Geophys. Res., 122, 4528-4549, doi:10.1002/2016JD025586.
-
Ding, J., et al. (2016), Ice cloud backscatter study and comparison with CALIPSO and MODIS satellite data Jiachen Ding,1 Ping Yang,1,* Robert E. Holz,2 Steven Platnick,3 Kerry G. Meyer,3,4 Mark, Optics Express, 24, 620-636, doi:10.1364/OE.24.000620.
-
Hioki, S., et al. (2016), Degree of ice particle surface roughness inferred from polarimetric observations, Atmos. Chem. Phys., 16, 7545-7558, doi:10.5194/acp-16-7545-2016.
-
Wang, C., et al. (2015), A High-Spectral-Resolution Radiative Transfer Model for Simulating Multilayered Clouds and Aerosols in the Infrared Spectral Region, J. Atmos. Sci., 72, 926-942, doi:10.1175/JAS-D-14-0046.1.
-
Liu, C., et al. (2014), A two-habit model for the microphysical and optical properties of ice clouds, Atmos. Chem. Phys., 14, 13719-13737, doi:10.5194/acp-14-13719-2014.
-
Bi, L., et al. (2013), Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles, J. Quant. Spectrosc. Radiat. Transfer, 116, 169-183, doi:10.1016/j.jqsrt.2012.11.014.
-
Cole, B.H., et al. (2013), Comparison of PARASOL Observations with Polarized Reflectances Simulated Using Different Ice Habit Mixtures, J. Appl. Meteor. Climat., 52, 186-196, doi:10.1175/JAMC-D-12-097.1.
-
Wang, C., et al. (2013), A fast radiative transfer model for visible through shortwave infrared spectral reflectances in clear and cloudy atmospheres, J. Quant. Spectrosc. Radiat. Transfer, 116, 122-131, doi:10.1016/j.jqsrt.2012.10.012.
-
Wang, C., et al. (2013), Retrieval of Ice Cloud Properties from AIRS and MODIS Observations Based on a Fast High-Spectral-Resolution Radiative Transfer Model, J. Appl. Meteor. Climat., 52, 710-726, doi:10.1175/JAMC-D-12-020.1.
-
Baum, B.A., et al. (2012), MODIS Cloud-Top Property Refinements for Collection 6, J. Appl. Meteor. Climat., 51, 1145-1163, doi:10.1175/JAMC-D-11-0203.1.
-
Iwabuchi, H., et al. (2012), Physical and optical properties of persistent contrails: Climatology and interpretation, J. Geophys. Res., 117, D06215, doi:10.1029/2011JD017020.
-
Lee, J., et al. (2012), Improvement of aerosol optical depth retrieval from MODIS spectral reflectance over the global ocean using new aerosol models archived from AERONET inversion data and tri-axial ellipsoidal dust database, Atmos. Chem. Phys., 12, 7087-7102, doi:10.5194/acp-12-7087-2012.
-
Minnis, P., et al. (2012), Simulations of Infrared Radiances over a Deep Convective Cloud System Observed during TC4: Potential for Enhancing Nocturnal Ice Cloud Retrievals, Remote Sens., 4, 3022-3054, doi:10.3390/rs4103022.
-
van Diedenhoven, B., et al. (2012), Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements – Part 1: Methodology and evaluation with simulated measurements, Atmos. Meas. Tech., 5, 2361-2374, doi:10.5194/amt-5-2361-2012.
-
Wang, C., et al. (2012), A new approach to retrieving cirrus cloud height with a combination of MODIS 1.24- and 1.38-micron channels, Geophys. Res. Lett., 39, L24806, doi:10.1029/2012GL053854.
-
Xie, Y., et al. (2012), Determination of ice cloud models using MODIS and MISR data, Intl. J. Remote. Sens., 33, 4219-4253, doi:10.1080/01431161.2011.642323.
-
Xie, Y., et al. (2012), Parameterization of contrail radiative properties for climate studies, Geophys. Res. Lett., 39, L00F02, doi:10.1029/2012GL054043.
-
Yi, B., et al. (2012), Simulation of the global contrail radiative forcing: A sensitivity analysis, Geophys. Res. Lett., 39, L00F03, doi:10.1029/2012GL054042.
-
Zhou, C., et al. (2012), Study of Horizontally Oriented Ice Crystals with CALIPSO Observations and Comparison with Monte Carlo Radiative Transfer Simulations, J. Appl. Meteor. Climat., 51, 1426-1439, doi:10.1175/JAMC-D-11-0265.1.
-
Baum, B.A., et al. (2011), Improvements in Shortwave Bulk Scattering and Absorption Models for the Remote Sensing of Ice Clouds, J. Appl. Meteor. Climat., 50, 1037-1056, doi:10.1175/2010JAMC2608.1.
-
Chen, X., et al. (2011), An efficient method for computing atmospheric radiances in clear-sky and cloudy conditions, J. Quant. Spectrosc. Radiat. Transfer, 112, 109-118, doi:10.1016/j.jqsrt.2010.08.013.
-
Ding, S., et al. (2011), Validation of the community radiative transfer model, J. Quant. Spectrosc. Radiat. Transfer, 112, 1050-1064, doi:10.1016/j.jqsrt.2010.11.009.
-
Feng, Q., et al. (2011), Effect of Thin Cirrus Clouds on Dust Optical Depth Retrievals From MODIS Observations, IEEE Trans. Geosci. Remote Sens., 49, 2819-2827, doi:10.1109/TGRS.2011.2118762.
-
Minnis, P., et al. (2011), CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, Part I: Algorithms, IEEE Trans. Geosci. Remote Sens., 49, 11-2892).
-
Wang, C., et al. (2011), Retrieval of Ice Cloud Optical Thickness and Effective Particle Size Using a Fast Infrared Radiative Transfer Model, J. Appl. Meteor. Climat., 50, 2283-2297, doi:10.1175/JAMC-D-11-067.1.
-
Xie, Y., et al. (2011), Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus clouds, Appl. Opt., 50, 1065-1081.
-
Yi, B., et al. (2011), Radiative transfer simulation of dust-like aerosols: Uncertainties from particle shape and refractive index, Journal of Aerosol Science, 42, 631-644, doi:10.1016/j.jaerosci.2011.06.008.
-
Zhou, D.K., et al. (2011), Global Land Surface Emissivity Retrieved From Satellite Ultraspectral IR Measurements, IEEE Trans. Geosci. Remote Sens., 49, 1277-1290, doi:10.1109/TGRS.2010.2051036.
-
Baum, B.A., et al. (2010), The impact of ice particle roughness on the scattering phase matrix, J. Quant. Spectrosc. Radiat. Transfer, 111, 2534-2549, doi:10.1016/j.jqsrt.2010.07.008.
-
Hong, G., et al. (2010), Detecting opaque and nonopaque tropical upper tropospheric ice clouds: A trispectral technique based on the MODIS 8–12 micron window bands, J. Geophys. Res., 115, D20214, doi:10.1029/2010JD014004.
-
Kindel, B.C., et al. (2010), Observations and modeling of ice cloud shortwave spectral albedo during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J18, doi:10.1029/2009JD013127.
-
Li, Y., et al. (2010), NOTES AND CORRESPONDENCE Exploration of the MODIS Cloud-Top Property Products for the Investigation of Equatorial Wave Systems, J. Appl. Meteor. Climat., 49, 2050-2057, doi:10.1175/2010JAMC2425.1.
-
Wind, G., et al. (2010), Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band, J. Appl. Meteor. Climat., 49, 2315-2333, doi:10.1175/2010JAMC2364.1.
-
Yang, Y., et al. (2010), Uncertainties in Ice-Sheet Altimetry From a Spaceborne 1064-nm Single-Channel Lidar Due to Undetected Thin Clouds, IEEE Trans. Geosci. Remote Sens., 48, 250-259, doi:10.1109/TGRS.2009.2028335.
-
Bi, L., et al. (2009), Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 mm, J. Geophys. Res., 114, D00H08, doi:10.1029/2009JD011759.
-
Ding, S., et al. (2009), Estimates of radiation over clouds and dust aerosols: Optimized number of terms in phase function expansion, J. Quant. Spectrosc. Radiat. Transfer, 110, 1190-1198, doi:10.1016/j.jqsrt.2009.03.032.
-
Feng, Q., et al. (2009), Effects of particle nonsphericity and radiation polarization on retrieving dust properties from MODIS observations, Aerosol Science, 40, 776-789, doi:10.1016/j.jaerosci.2009.05.001.
-
Garrett, K.J., et al. (2009), Influence of Cloud-Top Height and Geometric Thickness on a MODIS Infrared-Based Ice Cloud Retrieval, J. Appl. Meteor. Climat., 48, 818-832, doi:10.1175/2008JAMC1915.1.
-
Ham, S., et al. (2009), Assessment of the Quality of MODIS Cloud Products from Radiance Simulations, J. Appl. Meteor. Climat., 48, 1591-1612, doi:10.1175/2009JAMC2121.1.
-
Hong, G., et al. (2009), Parameterization of Shortwave and Longwave Radiative Properties of Ice Clouds for Use in Climate Models, J. Climate, 22, 6287-6312, doi:10.1175/2009JCLI2844.1.
-
Hu, Y., et al. (2009), CALIPSO/CALIOP Cloud Phase Discrimination Algorithm, J. Atmos. Oceanic Technol., 26, 2293-2309, doi:10.1175/2009JTECHA1280.1.
-
Xie, Y., et al. (2009), Effect of the inhomogeneity of ice crystals on retrieving ice cloud optical thickness and effective particle size, J. Geophys. Res., 114, D11203, doi:10.1029/2008JD011216.
-
Zhang, Z., et al. (2009), Influence of ice particle model on satellite ice cloud retrieval: lessons learned from MODIS and POLDER cloud product comparison, Atmos. Chem. Phys., 9, 7115-7129, doi:10.5194/acp-9-7115-2009.
-
Cho, H.-M., et al. (2008), Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements, Opt. Express, 16, 3931-3948.
-
Hong, G., et al. (2008), Optical properties of ice particles in young contrails, J. Quant. Spectrosc. Radiat. Transfer, 109, 2635-2647, doi:10.1016/j.jqsrt.2008.06.005.
-
Hong, G., et al. (2008), Do contrails significantly reduce daily temperature range?, Geophys. Res. Lett., 35, L23815, doi:10.1029/2008GL036108.
-
Hong, G., et al. (2008), Relationship between ice water content and equivalent radar reflectivity for clouds consisting of nonspherical ice particles, J. Geophys. Res., 113, D20205, doi:10.1029/2008JD009890.
-
Baum, B.A., et al. (2007), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part III: High-Resolution Spectral Models from 100 to 3250 cm-1, J. Appl. Meteor. Climat., 46, 423-434, doi:10.1175/JAM2473.1.
-
Hong, G., et al. (2007), High cloud properties from three years of MODIS Terra and Aqua collection 4 data over the tropics, J. Appl. Meteor. Climat., 46, 1840-1856, doi:10.1175/2007JAMC1583.1.
-
Lee, J., et al. (2006), The Influence of Thermodynamic Phase on the Retrieval of Mixed-Phase Cloud Microphysical and Optical Properties in the Visible and Near-Infrared Region, IEEE Geosci. Remote Sens. Lett., 3, 287-291, doi:10.1109/LGRS.2006.864374.
-
Lee, Y., et al. (2006), Potential nighttime contamination of CERES clear-sky fields of view by optically thin cirrus during the CRYSTAL-FACE campaign, J. Geophys. Res., 111, D09203, doi:10.1029/2005JD006372.
-
Sun, W., et al. (2006), On the retrieval of ice cloud particle shapes from POLDER measurements, J. Quant. Spectrosc. Radiat. Transfer, 101, 435-447, doi:10.1016/j.jqsrt.2006.02.071.
-
You, Y., et al. (2006), Sensitivity of depolarized lidar signals to cloud and aerosol particle properties, J. Quant. Spectrosc. Radiat. Transfer, 100, 470-482, doi:10.1016/j.jqsrt.2005.11.058.
-
Baum, B.A., et al. (2005), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part II: Narrowband Models, J. Appl. Meteor., 44, 1896-1911, doi:10.1175/JAM2309.1.
-
Baum, B.A., et al. (2005), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part I: Microphysical Data and Models, J. Appl. Meteor., 44, 1885-1895.
-
Chepfer, H., et al. (2005), Particle habit in tropical ice clouds during CRYSTAL-FACE: Comparison of two remote sensing techniques with in situ observations, J. Geophys. Res., 110, D16204, doi:10.1029/2004JD005455.
-
Li, J., et al. (2005), Retrieval of Cloud Microphysical Properties from MODIS and AIRS, J. Appl. Meteor., 44, 1526-1543.
-
Mace, J., et al. (2005), Evaluation of Cirrus Cloud Properties Derived from MODIS Data Using Cloud Properties Derived from Ground-Based Observations Collected at the ARM SGP Site, J. Appl. Meteor., 44, 221-240.
-
King, M.D., et al. (2004), Remote Sensing of Liquid Water and Ice Cloud Optical Thickness and Effective Radius in the Arctic: Application of Airborne Multispectral MAS Data, J. Atmos. Oceanic Technol., 21, 857-875.
-
Baum, B.A., et al. (2003), Nighttime Multilayered Cloud Detection Using MODIS and ARM Data, J. Appl. Meteor., 42, 905-919.
-
Baum, B.A., et al. (2000), Remote sensing of cloud properties using MODIS Airborne Simulator imagery during SUCCESS. I. Data and models, J. Geophys. Res., 105, 11,767-11,780.
-
Baum, B.A., et al. (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS II. Cloud thermodynamic phase, J. Geophys. Res., 105, 11781-11792.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.