Organization
NASA Langley Research Center
First Author Publications
-
Bedka, K., et al. (2021), Airborne lidar observations of wind, water vapor, and aerosol profiles during the NASA Aeolus calibration and validation (Cal/Val) test flight campaign, Atmos. Meas. Tech., 14, 4305-4334, doi:10.5194/amt-14-4305-2021.
-
Bedka, K., et al. (2019), Analysis and Automated Detection of Ice Crystal Icing Conditions Using Geostationary Satellite Datasets and In Situ Ice Water Content Measurements, SAE Technical Paper, 2019-01-1953, 2019, doi:10.4271/2019-01-1953.
-
Bedka, K., et al. (2019), Analysis and Automated Detection of Ice Crystal Icing Conditions Using Geostationary Satellite Datasets and In Situ Ice Water Content Measurements, SAE Technical Paper, 2019-01-1953, 2019, doi:10.4271/2019-01-1953.
-
Bedka, K., et al. (2018), The Above-Anvil Cirrus Plume: An Important Severe Weather Indicator in Visible and Infrared Satellite Imagery, Wea. Forecasting, 33, 1159-1181, doi:10.1175/WAF-D-18-0040.1.
-
Bedka, K., et al. (2018), A Long-Term Overshooting Convective Cloud-Top Detection Database over Australia Derived from MTSAT Japanese Advanced Meteorological Imager Observations, J. Appl. Meteor. Climat., 57, 937-951, doi:10.1175/JAMC-D-17-0056.1.
-
Bedka, K., and K. Khlopenkov (2016), A Probabilistic Multispectral Pattern Recognition Method for Detection of Overshooting Cloud Tops Using Passive Satellite Imager Observations, J. Appl. Meteor. Climat., 55, 1983-2005, doi:10.1175/JAMC-D-15-0249.1.
-
Bedka, K., et al. (2015), Examining Deep Convective Cloud Evolution Using Total Lightning, WSR-88D, and GOES-14 Super Rapid Scan Datasets. Wea. Forecasting, 30, 571-590, doi:10.1175/WAF-D-14-00062.1.
-
Bedka, K., et al. (2012), Validation of Satellite-Based Objective Overshooting Cloud-Top Detection Methods Using CloudSat Cloud Profiling Radar Observations, J. Appl. Meteor. Climat., 51, 1811-1822, doi:10.1175/JAMC-D-11-0131.1.
-
Bedka, K., et al. (2010), Objective Satellite-Based Detection of Overshooting Tops Using Infrared Window Channel Brightness Temperature Gradients, J. Appl. Meteor. Climat., 49, 181-202, doi:10.1175/2009JAMC2286.1.
-
Bedka, K., and P. Minnis (2010), GOES 12 observations of convective storm variability and evolution during the Tropical Composition, Clouds and Climate Coupling Experiment field program, J. Geophys. Res., 115, D00J13, doi:10.1029/2009JD013227.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Homeyer, C., et al. (2023), Extreme Altitudes of Stratospheric Hydration by Midlatitude Convection Observed During the DCOTSS Field Campaign, Geophys. Res. Lett..
-
Khlopenkov, K., et al. (2022), Recent Advances in Detection of Overshooting Cloud Tops From Longwave Infrared Satellite Imagery, J. Geophys. Res..
-
Vernier, ., et al. (2022), Exploring the inorganic composition of the Asian Tropopause Aerosol Layer using medium-duration balloon flights, Atmos. Chem. Phys., 22, 12675-12694, doi:10.5194/acp-22-12675-2022.
-
Sandmæl, T.N., et al. (2020), Evaluating the Ability of Remote Sensing Observations to Identify Significantly Severe and Potentially Tornadic Storms, J. Appl. Meteor. Climat., doi:10.1175/JAMC-D-18-0241.1.
-
Clapp, C., et al. (2019), Identifying source regions and the distribution of cross‐tropopause convective outflow over North America during the warm season, J. Geophys. Res., 124, 13750-, doi:10.1029/2019JD031382.
-
Trepte, ., et al. (2019), Global Cloud Detection for CERES Edition 4 Using Terra and Aqua MODIS Data, IEEE Trans. Geosci. Remote Sens., 57, 9410-9449, doi:10.1109/TGRS.2019.2926620.
-
Apke, J.M., et al. (2018), Relationships between Deep Convection Updraft Characteristics and Satellite-Based Super Rapid Scan Mesoscale Atmospheric Motion Vector-Derived Flow, Mon. Wea. Rev., 146, 3461-3480, doi:10.1175/MWR-D-18-0119.1.
-
Yost, C.R., et al. (2018), A prototype method for diagnosing high ice water content probability using satellite imager data, Atmos. Meas. Tech., 11, 1615-1637, doi:10.5194/amt-11-1615-2018.
-
Herman, R.L., et al. (2017), Enhanced stratospheric water vapor over the summertime continental United States and the role of overshooting convection, Atmos. Chem. Phys., 17, 6113-6124, doi:10.5194/acp-17-6113-2017.
-
Homeyer, C., et al. (2017), On the Development of Above-Anvil Cirrus Plumes in Extratropical Convection, J. Atmos. Sci., 74, 1617-1633, doi:10.1175/JAS-D-16-0269.1.
-
Khlopenkov, K., et al. (2017), Development of Multi-Sensor Global Cloud and Radiance Composites for Earth Radiation Budget Monitoring from DSCOVR. Proc. SPIE Conf. Remote Sens. Clouds and the Atmos. XXII, Warsaw, Poland, 10424-19, 11-14, doi:10.1117/12.2278645.
-
Punge, H.J., et al. (2017), Hail frequency estimation across Europe based on a combination of overshooting top detections and the ERA-Interim reanalysis, Atmos. Res., 198, 34-43.
-
Scarino, B., et al. (2017), Global clear-sky surface skin temperature from multiple satellites using a single-channel algorithm with angular anisotropy corrections, Atmos. Meas. Tech., 10, 351-371, doi:10.5194/amt-10-351-2017.
-
Smith, J.B., et al. (2017), A case study of convectively sourced water vapor observed in the overworld stratosphere over the United States, J. Geophys. Res., 122, 9529-9554, doi:10.1002/2017JD026831.
-
Bhatt, R., et al. (2016), A Consistent AVHRR Visible Calibration Record Based on Multiple Methods Applicable for the NOAA Degrading Orbits. Part I: Methodology, J. Atmos. Oceanic Technol., 33, 2499-2515, doi:10.1175/JTECH-D-16-0044.1.
-
Doelling, D., et al. (2016), A Consistent AVHRR Visible Calibration Record Based on Multiple Methods Applicable for the NOAA Degrading Orbits. Part II: Validation, J. Atmos. Oceanic Technol., 33, 2517-2534, doi:10.1175/JTECH-D-16-0042.1.
-
Jean-Paul, J.J., et al. (2016), In situ and space-based observations of the Kelud volcanic plume: The persistence of ash in the lower stratosphere, J. Geophys. Res., 121, 11,104-11,118, doi:10.1002/2016JD025344.
-
Fairlie, T.D., et al. (2014), Dispersion of the Nabro volcanic plume and its relation to the Asian summer monsoon, Atmos. Chem. Phys., 14, 7045-7057, doi:10.5194/acp-14-7045-2014.
-
Shrestha, A.K., et al. (2014), Unfiltering Earth Radiation Budget Experiment (ERBE) Scanner Radiances Using the CERES Algorithm and Its Evaluation with Nonscanner Observations, J. Atmos. Oceanic Technol., 31, 843-859, doi:10.1175/JTECH-D-13-00072.1.
-
Minnis, P., et al. (2013), Linear contrail and contrail cirrus properties determined from satellite data, Geophys. Res. Lett., 40, 3220-3226, doi:10.1002/grl.50569.
-
Jean-Paul, J.J., et al. (2013), Comment on “Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport”, Science, 339, 647-d, doi:10.1126/science.1227817.
-
Mecikalski, J., et al. (2007), Aviation Applications for Satellite-Based Observations of Cloud Properties, Convection Initiation, In-Flight Icing, Turbulence, and Volcanic Ash, Bull. Am. Meteorol. Soc., 1589-1607, doi:10.1175/BAMS-88-10-1589.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.