Organization
Harvard University
Email
Business Phone
Work
(617) 998-5550
Mobile
(339) 368-0011
Business Address
Department of Chemistry and Chemical Biology Harvard University
12 Oxford Street
Cambridge, MA 02138
United States
Website
First Author Publications
-
Anderson, J.G., and O.B. Toon (1993), Airborne Arctic stratospheric expedition II: An overview, Geophys. Res. Lett., 20, 2499-2502.
-
Anderson, J.G., and W.H. Brune (1989), Lloyd, D. W. Toohey, S. P. Sander, W. L. Starr, M. Loewenstein, and J. R. Podolske, J. Geophys. Res., 94, 11,480-11.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Wilmouth, D., et al. (2023), RESEARCH ARTICLE | EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES OPEN ACCESS Impact of the Hunga Tonga volcanic eruption on stratospheric composition, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2301994120.
-
Clapp, C., et al. (2019), Identifying source regions and the distribution of cross‐tropopause convective outflow over North America during the warm season, J. Geophys. Res., 124, 13750-, doi:10.1029/2019JD031382.
-
Smith, J.B., et al. (2017), A case study of convectively sourced water vapor observed in the overworld stratosphere over the United States, J. Geophys. Res., 122, 9529-9554, doi:10.1002/2017JD026831.
-
Thurlow, M.E., et al. (2014), The development and deployment of a ground-based, laser-induced fluorescence instrument for the in situ detection of iodine monoxide radicals, Rev. Sci. Instrum., 85, 44101, doi:10.1063/1.4869857.
-
Wielicki, B., et al. (2013), Achieving Climate Change Absolute Accuracy in Orbit, Bull. Am. Meteorol. Soc., 94, 1519-1539, doi:10.1175/BAMS-D-12-00149.1.
-
Sayres, D., et al. (2010), Influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere, J. Geophys. Res., 115, D00J20, doi:10.1029/2009JD013100.
-
Sayres, D., et al. (2009), A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere, Review of Scientific Instruments, 80, 044102, doi:10.1063/1.3117349.
-
Weinstock, E., et al. (2009), Validation of the Harvard Lyman-a in situ water vapor instrument: Implications for the mechanisms that control stratospheric water vapor, J. Geophys. Res., 114, D23301, doi:10.1029/2009JD012427.
-
Wilmouth, D., et al. (2009), Chlorine-Catalyzed Ozone Destruction: Cl Atom Production from ClOOCl Photolysis, J. Phys. Chem. A, 113, 14099-14108, doi:10.1021/jp9053204.
-
Leroy, S., et al. (2008), Testing Climate Models Using Thermal Infrared Spectra, J. Climate, 21, 1863-1875, doi:10.1175/2007JCLI2061.1.
-
Leroy, S., et al. (2008), Climate Signal Detection Times and Constraints on Climate Benchmark Accuracy Requirements, J. Climate, 21, 841-846, doi:10.1175/2007JCLI1946.1.
-
Sayres, D., et al. (2008), Validation and determination of ice water contentradar reflectivity relationships during CRYSTALFACE: Flight requirements for future comparisons, J. Geophys. Res., 113, D05208, doi:10.1029/2007JD008847.
-
St. Clair, J.M., et al. (2008), A new photolysis laser-induced fluorescence instrument for the detection of H2O and HDO in the lower stratosphere, Review Of Scientific Instruments, 79, 64101, doi:10.1063/1.2940221.
-
Hanisco, T.F., et al. (2007), Observations of deep convective influence on stratospheric water vapor and its isotopic composition, Geophys. Res. Lett., 34, L04814, doi:10.1029/2006GL027899.
-
Pittman, J.V., et al. (2007), Transport in the subtropical lowermost stratosphere during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment, J. Geophys. Res., 112, D08304, doi:10.1029/2006JD007851.
-
Weinstock, E., et al. (2007), Quantifying the impact of the North American monsoon and deep midlatitude convection on the subtropical lowermost stratosphere using in situ measurements, J. Geophys. Res., 112, D18310, doi:10.1029/2007JD008554.
-
Co, D.T., et al. (2005), Rotationally Resolved Absorption Cross Sections of Formaldehyde in the 28100-28500 cm-1 (351-356 nm) Spectral Region: Implications for in Situ LIF Measurements, J. Phys. Chem. A, 109, 10675-10682, doi:10.1021/jp053466i.
-
Stimpfle, R.M., et al. (2004), First measurements of ClOOCl in the stratosphere: The coupling of ClOOCl and ClO in the Arctic polar vortex, J. Geophys. Res., 109, D03301, doi:10.1029/2003JD003811.
-
Xueref, I., et al. (2004), Combining a receptor-oriented framework for tracer distributions with a cloud-resolving model to study transport in deep convective clouds: Application to the NASA CRYSTAL-FACE campaign, Geophys. Res. Lett., 31, L14106, doi:10.1029/2004GL019811.
-
Hanisco, T.F., et al. (2002), In situ observations of HO2 and OH obtained on the NASA ER-2 in the high-ClO conditions of the 1999/2000 Arctic polar vortex, J. Geophys. Res., 107, 8283, doi:10.1029/2001JD001024.
-
Hanisco, T.F., et al. (2002), Quantifying the rate of heterogeneous processing in the Arctic polar vortex with in situ observations of OH, J. Geophys. Res., 107, 8278, doi:10.1029/2000JD000425.
-
Newman, P.A., et al. (2002), An overview of the SOLVE/THESEO 2000 campaign, J. Geophys. Res., 107, 20.
-
Lanzendorf, E.J., et al. (2001), Establishing the dependence of [HO2]/[OH] on temperature, halogen loading, O3, and Nox based on in situ measurements from the NASA ER-2, J. Phys. Chem. A, 105, 1535-1542.
-
Perkins, K.K., et al. (2001), The Nox-HNO3 System in the lower stratosphere: Insights from in situ measurements and implications of the JHNO3-[OH] relationship, J. Phys. Chem. A, 105, 1521-1534.
-
Voss, P.B., et al. (2001), Inorganic chlorine partitioning in the summer lower stratosphere: Modeled and measured [ClONO2]/[HCl] during POLARIS, Geophys. Res. Lett., 106, 1713-1732.
-
Weinstock, E., et al. (2001), Constraints on the seasonal cycle of stratospheric water vapor using in situ measurements from the ER-2 and a CO photochemical clock, J. Geophys. Res., 106, 22707-22734, doi:2000JD000047.
-
Hintsa, E.J., et al. (1999), On the accuracy of in situ water vapor measurements in the troposphere and lower stratosphere with the Harvard Lyman-α hygrometer, J. Geophys. Res., 104, 8183-8189.
-
Cohen, R.C., et al. (1994), Are Models of Catalytic Removal of O3 by HOx accurate? Constraints From in situ Measurements of the OH to HO2 Ratio, Geophys. Res. Lett., 21, 2539-2542.
-
Hintsa, E.J., et al. (1994), SPADE H2O Measurements and the Seasonal Cycle of Stratospheric Water Vapor, Geophys. Res. Lett., 21, 2559-2562.
-
Salawitch, R.J., et al. (1994), The Distribution of Hydrogen, Nitrogen, and Chlorine Radicals in the Lower Stratosphere: Implications for Changes in O3 Due to Emission of NOy from Supersonic Aircraft, Geophys. Res. Lett., 21, 2547-2550.
-
Stimpfle, R.M., et al. (1994), The Response of ClO Radical Concentrations to Variations in NO2 Radical Concentrations in the Lower Stratosphere, Geophys. Res. Lett., 21, 2543-2546.
-
Wennberg, P.O., et al. (1994), Aircraft-borne, Laser-Induced Fluorescence Instrument for the in situ detection of hydroxyl and hydroperoxyl radicals, Review of Scientific Instruments, 65, 1858-1876.
-
Wennberg, P., et al. (1994), Removal of Stratospheric O3 by Radicals: In Situ Measurements of OH, HO2, NO, NO2, ClO, and BrO, Science, 266, 398-404.
-
Avallone, L.M., et al. (1993), In situ measurement of ClO at midlatitudes: Is there an effect from Mt. Pinatubo?, Geophys. Res. Lett., 20, 2519-2522.
-
Salawitch, R.J., et al. (1993), Chemical Loss of Ozone in the Arctic Polar Vortex in the Winter of 1991-1992, Science, 261, 1146-1149.
-
Webster, C.R., et al. (1993), Chlorine chemistry on polar stratospheric cloud particles in the Arctic winter, Science, 261, 1140-1143.
-
Toohey, D.W., et al. (1991), In Situ Measurements of Midlatitude ClO in Winter, Geophys. Res. Lett., 18, 21-24.
-
Brune, W.H., et al. (1990), In situ Observations of ClO in the Arctic Stratosphere: ER-2 Aircraft Results from 59°N to 80°N Latitude, Geophys. Res. Lett., 17, 505-508.
-
Kawa, S.R., et al. (1990), Interpretation of Aircraft Measurements of NO, ClO, and O3 in the Lower Stratosphere, J. Geophys. Res., 95, 18,597-18.
-
Toohey, D.W., et al. (1990), In situ Observations of BrO in the Arctic Stratosphere, Geophys. Res. Lett., 17, 513-516.
-
Austin, J., et al. (1989), Lagrangian Photochemical Modelling Studies of the 1987 Antarctic Spring Vortex, 2: Seasonal Trends in Ozone, J. Geophys. Res., 94, 16,717-16.
-
Brune, W.H., et al. (1989), In situ observations of ClO in the Antarctic: ER-2 aircraft results from 54 S to 72 S latitude, J. Geophys. Res., 94, 16649-16663.
-
Jones, R.L., et al. (1989), Lagrangian Photochemical Modeling Studies of the 1987 Antarctic Spring Vortex, 1: Comparison with AAOE Observations, J. Geophys. Res., 94, 11,529-11.
-
Rodriguez, J.M., et al. (1989), Nitrogen and Chlorine Species in the Spring Antarctic Stratosphere: Comparison of Models and AAOE Observations, J. Geophys. Res., 94, 16,683-16.
-
Schoeberl, M.R., et al. (1989), Reconstruction of the Constituent Distribution and Trends in the Antarctic Polar Vortex from the ER-2 Flight Observation, J. Geophys. Res., 94, 16,815-16.
-
Brune, W.H., and J.G. Anderson (1986), In Situ Observations of Midlatitude Stratospheric ClO and BrO, Geophys. Res. Lett., 13, 1391-1394.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.