The KORUS-AQ website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.
Frank Keutsch
Business Address:
Department of Chemistry and Chemical Biology
Cambridge, MA 02138
United StatesCo-Authored Publications:
- Li, Y., et al. (2023), Predicting Real Refractive Index of Organic Aerosols From Elemental Composition, Geophys. Res. Lett..
- Li, Y., et al. (2023), In situ measurements of perturbations to stratospheric aerosol and modeled ozone and radiative impacts following the, Atmos. Chem. Phys., 23, 15351-15364, doi:10.5194/acp-23-15351-2023.
- Li, Y., et al. (2022), Composition Dependence of Stratospheric Aerosol Shortwave Radiative Forcing in Northern Midlatitudes, Geophys. Res. Lett..
- Schwantes, R., et al. (2022), Evaluating the Impact of Chemical Complexity and Horizontal Resolution on Tropospheric Ozone Over the Conterminous US With a Global Variable Resolution Chemistry Model, J. Adv. Modeling Earth Syst., 14, e2021MS002889, doi:10.1029/2021MS002889.
- Zhu, L., et al. (2020), Validation of satellite formaldehyde (HCHO) retrievals using observations from 12 aircraft campaigns, Atmos. Chem. Phys., 20, 12329-12345, doi:10.5194/acp-20-12329-2020.
- Marvin, M. R., et al. (2017), Impact of evolving isoprene mechanisms on simulated formaldehyde: An inter-comparison supported by in situ observations from SENEX, Atmos. Environ., 164, 325-336, doi:10.1016/j.atmosenv.2017.05.049.
- Zhu, L., et al. (2017), Formaldehyde (HCHO) As a Hazardous Air Pollutant: Mapping Surface Air Concentrations from Satellite and Inferring Cancer Risks in the United States, Environ. Sci. Technol., 51, 5650-5657, doi:10.1021/acs.est.7b01356.
- Müller, M., et al. (2016), In situ measurements and modeling of reactive trace gases in a small biomass burning plume, Atmos. Chem. Phys., 16, 3813-3824, doi:10.5194/acp-16-3813-2016.
- Wolfe, G. M., et al. (2016), Formaldehyde production from isoprene oxidation across NOx regimes, Atmos. Chem. Phys., 16, 2597-2610, doi:10.5194/acp-16-2597-2016.
- Liao, J., et al. (2015), Airborne organosulfates measurements over the continental US, J. Geophys. Res., 120, 2990-3005, doi:10.1002/2014JD022378.
- Wolfe, G. M., et al. (2012), Photolysis, OH reactivity and ozone reactivity of a proxy for isoprene-derived hydroperoxyenals (HPALDs), Phys. Chem. Chem. Phys., 14, 7276-7286, doi:10.1039/c2cp40388a.
- Sayres, D., et al. (2009), A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere, Review of Scientific Instruments, 80, 044102, doi:10.1063/1.3117349.
- Hanisco, T. F., et al. (2007), Observations of deep convective influence on stratospheric water vapor and its isotopic composition, Geophys. Res. Lett., 34, L04814, doi:10.1029/2006GL027899.
- Co, D. T., et al. (2005), Rotationally Resolved Absorption Cross Sections of Formaldehyde in the 28100-28500 cm-1 (351-356 nm) Spectral Region: Implications for in Situ LIF Measurements, J. Phys. Chem. A, 109, 10675-10682, doi:10.1021/jp053466i.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.