Organization
Jet Propulsion Laboratory
Email
Business Phone
Work
(818) 354-9305
Business Address
Jet Propulsion Laboratory, Caltech
4800 Oak Grove Drive
Pasadena, CA 91109
United States
First Author Publications
-
Fielding, E.J., et al. (2020), Surface deformation related to the 2019 Mw 7.1 and 6.4 Ridgecrest Earthquakes in California from GPS, SAR interferometry, and SAR pixel offsets, Seismol. Res. Lett., 91, 2035-2046, doi:10.1785/0220190302.
-
Fielding, E.J., et al. (2017), Surface Deformation of North-Central Oklahoma Related to the 2016 Mw 5.8 Pawnee Earthquake from SAR Interferometry Time Series, Seismological Research Letters, 88, 971-982, doi:10.1785/0220170010.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Li, X., et al. (2024), Exploring the behaviors of initiated progressive failure and slow‐moving landslides in Los Angeles using satellite InSAR and pixel offset tracking, Geophys. Res. Lett., 51, e2024GL108267.
-
Xu, Y., et al. (2024), Forecasting inundation of catastrophic landslides from precursory creep, Geophys. Res. Lett., 51, e2024GL110210, doi:10.1029/2024GL110210.
-
Xu, L., et al. (2023), Understanding the Rupture Kinematics and Slip Model of the 2021 Mw 7.4 Maduo Earthquake: A Bilateral Event on Bifurcating Faults, J. Geophys. Res., 128, e2022JB025936, doi:10.1029/2022jb025936.
-
Xu, Y., et al. (2023), P-band SAR for ground deformation surveying: Advantages and challenges, Remote Sensing of Environment, 287, 113474, doi:10.1016/j.rse.2023.113474.
-
Brink, U.S.T., et al. (2022), Mature Diffuse Tectonic Block Boundary Revealed by the 2020 Southwestern Puerto Rico Seismic Sequence, Tectonics, 41, e2021TC006896, doi:10.1029/2021TC006896.
-
Handwerger, A., et al. (2022), Landslide Sensitivity and Response to Precipitation Changes in Wet and Dry Climates, Geophys. Res. Lett., 49, doi:https://doi.org/10.1029/2022GL099499.
-
Huang, S.A., et al. (2022), Toward Accurate Flood Forecasting in the Samoan Islands: Constraining Patterns of Vertical Land Motion using GNSS, Tide Gauge, and InSAR Time-Series Analysis, AGU Fall Meeting 2022, Dec. 12-16, Hybrid -- Chicago, IL and online.
-
Melgar, D., et al. (2022), The Mechanisms of Tsunami Amplification and the Earthquake Source of the 2021 M 7 Acapulco, Mexico, Earthquake, Bull. Seismol. Soc. Am., 112, 2902-2914, doi:10.1785/0120220098.
-
Handwerger, A., et al. (2021), Inferring the Subsurface Geometry and Strength of Slow-Moving Landslides Using 3-D Velocity Measurements From the NASA/JPL UAVSAR, J. Geophys. Res., doi:https://doi.org/10.1029/2020JF005898.
-
Hu, X., et al. (2021), Machine-Learning Characterization of Tectonic, Hydrological and Anthropogenic Sources of Active Ground Deformation in California, J. Geophys. Res..
-
Liao, T., et al. (2021), High-Resolution Soil-Moisture Maps Over Landslide Regions in Northern California Grassland Derived From SAR Backscattering Coefficients, IEEE Journal Of Selected Topics In Applied Earth Observations And Remote Sensing, 14, 4547-4560, doi:10.1109/JSTARS.2021.3069010.
-
Ragon, T., et al. (2021), A Stochastic View of the 2020 Elazığ Mw 6.8 Earthquake (Turkey), Geophys. Res. Lett., 48, e2020GL090704, doi:10.1029/2020GL090704.
-
Hu, ., et al. (2020), Four-dimensional surface motions of the Slumgullion landslide and quantification of hydrometeorological forcing, Nature Communications, 11, 2792, doi:10.1038/s41467-020-16617-7.
-
Hu, ., et al. (2020), Four-dimensional surface motions of the Slumgullion landslide and quantification of hydrometeorological forcing, Nature, doi:10.1038/s41467-020-16617-7.
-
Tung, S., et al. (2020), Rapid Geodetic Analysis of Subduction Zone Earthquakes Leveraging a 3‐D Elastic Green's Function Library, Geophys. Res. Lett..
-
Wibisono, D.F., et al. (2020), Rapid collaborative knowledge building via Twitter after significant geohazard events, Geosci. Commun., 3, 129-146, doi:10.5194/gc-3-129-2020.
-
Bao, H., et al. (2019), Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake, Nature Geoscience, 12, 200-205, doi:10.1038/s41561-018-0297-z.
-
Handwerger, A., et al. (2019), Widespread Initiation, Reactivation, and Acceleration of Landslides in the Northern California Coast Ranges due to Extreme Rainfall, J. Geophys. Res., 124, 1782-1797, doi:10.1029/2019JF005035.
-
Handwerger, A., et al. (2019), A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure, Scientific Reports, 9, 1569, doi:10.1038/s41598-018-38300-0.
-
Handwerger, A., et al. (2019), A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure, Scientific Reports, 9, 1569, doi:10.1038/s41598-018-38300-0.
-
Liang, C., et al. (2019), Ionospheric Correction of InSAR Time Series Analysis of C-band Sentinel-1 TOPS Data, IEEE Trans. Geosci. Remote Sens., 57, 6755-6773, doi:10.1109/TGRS.2019.2908494.
-
Madson, A., et al. (2019), High-Resolution Spaceborne, Airborne and In Situ Landslide Kinematic Measurements of the Slumgullion Landslide in Southwest Colorado, Remote Sensing, 11, 265, doi:10.3390/rs11030265.
-
Ross, Z.E., et al. (2019), Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence, Science, 366, 346-351, doi:10.1126/science.aaz0109.
-
Tung, S., et al. (2019), Rapid Geodetic Analysis of Subduction Zone Earthquakes Leveraging a 3‐D Elastic Green's Function Library, Geophys. Res. Lett., 46, 2475-2483, doi:10.1029/2018GL080578.
-
Ulrich, T., et al. (2019), Coupled, Physics-Based Modeling Reveals Earthquake Displacements are Critical to the 2018 Palu, Sulawesi Tsunami, Pure Appl. Geophys, doi:10.1007/s00024-019-02290-5.
-
Dickinson-Lovell, H., et al. (2018), Inferred rheological structure and mantle conditions from postseismic deformation following the 2010 Mw 7.2 El Mayor-Cucapah Earthquake, Geophysical Journal International, 213, 1720-1730, doi:10.1093/gji/ggx546.
-
Gombert, B., et al. (2018), Strain budget of the Ecuador–Colombia subduction zone: A stochastic view, Earth Planet. Sci. Lett., 498, 288-299, doi:10.1016/j.epsl.2018.06.046.
-
Liang, C., et al. (2018), InSAR Time Series Analysis of L-Band Wide-Swath SAR Data Acquired by ALOS-2, IEEE Trans. Geosci. Remote Sens., 56, 4492-4506, doi:10.1109/TGRS.2018.2821150.
-
Vajedian, S., et al. (2018), Coseismic Deformation Field of the Mw 7.3 12 November 2017 Sarpol-e Zahab (Iran) Earthquake: A Decoupling Horizon in the Northern Zagros Mountains Inferred from InSAR Observations, Remote Sensing, 10, 1589, doi:10.3390/rs10101589.
-
Chaussard, E., et al. (2017), Remote Sensing of Ground Deformation for Monitoring Groundwater Management Practices: Application to the Santa Clara Valley During the 2012–2015 California Drought, J. Geophys. Res., 120, doi:10.1002/2015JB012230.
-
Dickinson-Lovell, H., et al. (2017), Inferred rheological structure and mantle conditions from postseismic deformation following the 2010 Mw 7.2 El Mayor-Cucapah Earthquake, Geophys. J. Int., 546-1730, doi:10.1093/gji/ggx546.
-
Shirzaei, M., et al. (2017), Applicability of Sentinel-1 Terrain Observation by Progressive Scans multitemporal interferometry for monitoring slow ground motions in the San Francisco Bay Area, Geophys. Res. Lett., 44, doi:10.1002/2017GL072663.
-
Huang, M., et al. (2016), Fault geometry inversion and slip distribution of the 2010 Mw 7.2 El Mayor-Cucapah earthquake from geodetic data, J. Geophys. Res., 121, doi:10.1002/2016JB012858.
-
Wei, S., et al. (2015), The 2012 Brawley swarm triggered by injection-induced aseismic slip, Earth Planet. Sci. Lett., 422, 115-125, doi:10.1016/j.epsl.2015.03.054.
-
Chaussard, E., et al. (2014), Predictability of hydraulic head changes and characterization of aquifer-system and fault properties from InSAR-derived ground deformation, J. Geophys. Res., 119, doi:10.1002/2014JB011266.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.