Organization:
University of Colorado, Boulder
Cooperative Institute for Research in Environmental Sciences
First Author Publications:
- Day, D. A., et al. (2022), A systematic re-evaluation of methods for quantification of bulk particle-phase organic nitrates using real-time aerosol mass spectrometry, Atmos. Meas. Tech., 15, 459-483, doi:10.5194/amt-15-459-2022.
- Day, D. A., P. J. Wooldridge, and R. C. Cohen (2008), Observations of the effects of temperature on atmospheric HNO3, ANs, PNs, and NOx: evidence for a temperature-dependent HOx source, Atmos. Chem. Phys., 8, 1867-1879, doi:10.5194/acp-8-1867-2008.
- Day, D. A., et al. (2003), On alkyl nitrates, O3, and the ‘‘missing NOy’’, J. Geophys. Res., 108, 4501, doi:10.1029/2003JD003685.
- Day, D. A., et al. (2002), A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3, J. Geophys. Res., 107, doi:10.1029/2001JD000779.
Co-Authored Publications:
- Gkatzelis, G., et al. (2024), Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., doi:10.5194/acp-24-929-2024.
- Jenks, O. J., et al. (2024), pubs.acs.org/estair Article Effects of 222 nm Germicidal Ultraviolet Light on Aerosol and VOC Formation from Limonene, Anal. Chem., 1, 820−828, doi:10.1021/acsestair.4c00065.
- Schueneman, M., et al. (2024), Secondary Organic Aerosol Formation from the OH Oxidation of Phenol, Catechol, Styrene, Furfural, and Methyl Furfural, Anal. Chem., 1179, 1179−1192, doi:10.1021/acsearthspacechem.3c00361.
- Schueneman, M., et al. (2024), A multi-instrumental approach for calibrating real-time mass spectrometers using high-performance liquid chromatography and positive matrix factorization, doi:10.5194/ar-2-59-2024.
- Jeon, S., et al. (2023), A searchable database and mass spectral comparison tool for the Aerosol Mass Spectrometer (AMS) and the Aerosol Chemical Speciation Monitor (ACSM), Atmos. Meas. Tech., 16, 6075-6095, doi:10.5194/amt-16-6075-2023.
- Pagonis, D., et al. (2023), Impact of Biomass Burning Organic Aerosol Volatility on Smoke Concentrations Downwind of Fires, Environ. Sci. Technol., 57, 17011-17021, doi:10.1021/acs.est.3c05017.
- Travis, K. R., et al. (2023), Emission Factors for Crop Residue and Prescribed Fires in the Eastern US during FIREX-AQ, J. Geophys. Res., 128, e2023JD039309, doi:10.1029/2023JD039309.
- Kim, D., et al. (2022), Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol, Atmos. Chem. Phys., doi:10.5194/acp-22-805-2022.
- Brock, C., et al. (2021), Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements, Atmos. Chem. Phys., 21, 15023-15063, doi:10.5194/acp-21-15023-2021.
- Guo, H., et al. (2021), The importance of size ranges in aerosol instrument intercomparisons: a case study for the Atmospheric Tomography Mission, Atmos. Meas. Tech., 14, 3631-3655, doi:10.5194/amt-14-3631-2021.
- Kenagy, H., et al. (2021), Contribution of Organic Nitrates to Organic Aerosol over South Korea during KORUS-AQ, Environ. Sci. Technol., 55, 16326-16338, doi:10.1021/acs.est.1c05521.
- Nault, B., et al. (2021), Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality, Atmos. Chem. Phys., 21, 11201-11224, doi:10.5194/acp-21-11201-2021.
- Nault, B., et al. (2021), Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere, Commun Earth Environ, 2, doi:10.1038/s43247-021-00164-0.
- Pagonis, D., et al. (2021), Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol, Atmos. Meas. Tech., 14, 1545-1559, doi:10.5194/amt-14-1545-2021.
- Schueneman, M., et al. (2021), Aerosol pH indicator and organosulfate detectability from aerosol mass spectrometry measurements, Atmos. Meas. Tech., 14, 2237-2260, doi:10.5194/amt-14-2237-2021.
- Schueneman, M., et al. (2021), Aerosol pH Indicator and Organosulfate Detectability from Aerosol Mass Spectrometry Measurements, Atmos. Meas. Tech., doi:10.5194/amt-2020-339.
- Hodzic, A., et al. (2020), Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models, Atmos. Chem. Phys., 20, 4607-4635, doi:10.5194/acp-20-4607-2020.
- Hu, W., et al. (2020), Ambient Quantification and Size Distributions for Organic Aerosol in Aerosol Mass Spectrometers with the New Capture Vaporizer, Anal. Chem., 676, 676−689, doi:10.1021/acsearthspacechem.9b00310.
- Nault, B., et al. (2020), Interferences with aerosol acidity quantification due to gas-phase ammonia uptake onto acidic sulfate filter samples, Atmos. Meas. Tech., 13, 6193-6213, doi:10.5194/amt-13-6193-2020.
- Veres, P., et al. (2020), Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere, Proc. Natl. Acad. Sci., 117, doi:10.1073/pnas.1919344117.
- Haskins, J. D., et al. (2019), Anthropogenic Control Over Wintertime Oxidation of Atmospheric Pollutants, Geophys. Res. Lett., 46, 14,826-14,835, doi:10.1029/2019GL085498.
- Jimenez-Palacios, J., et al. (2019), ATom: L2 Measurements from CU High-Resolution Aerosol Mass Spectrometer (HR-AMS), Ornl Daac, doi:10.3334/ORNLDAAC/1716.
- Haskins, J. D., et al. (2018), Wintertime Gas-Particle Partitioning and Speciation of Inorganic Chlorine in the Lower Troposphere Over the Northeast United States and Coastal Ocean, J. Geophys. Res., 123, 12,897-12,916, doi:10.1029/2018JD028786.
- Hu, W., et al. (2018), Evaluation of the New Capture Vaporizer for Aerosol Mass Spectrometers (AMS): Elemental Composition and Source Apportionment of Organic Aerosols (OA), Anal. Chem., 2, 410−421, doi:10.1021/acsearthspacechem.8b00002.
- Jaeglé, L., et al. (2018), Nitrogen Oxides Emissions, Chemistry, Deposition, and Export Over the Northeast United States During the WINTER Aircraft Campaign, J. Geophys. Res., 123, 12,368-12,393, doi:10.1029/2018JD029133.
- Nault, B., et al. (2018), Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ, Atmos. Chem. Phys., 18, 17769-17800, doi:10.5194/acp-18-17769-2018.
- Schroder, J. C., et al. (2018), Sources and Secondary Production of Organic Aerosols in the Northeastern United States during WINTER, J. Geophys. Res., 123, 7771-7796, doi:10.1029/2018JD028475.
- Wofsy, S. C., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, Ornl Daac, doi:10.3334/ORNLDAAC/1581.
- Hu, W., et al. (2017), Evaluation of the new Capture Vaporizer for Aerosol Mass Spectrometers (AMS) through field studies of inorganic species, Aerosol Sci. Tech., doi:10.1080/02786826.2017.1296104.
- Hu, W., et al. (2017), Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species, Atmos. Meas. Tech., 10, 2897-2921.
- Liu, X., et al. (2017), Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications, J. Geophys. Res., 122, 6108-6129, doi:10.1002/2016JD026315.
- Sorooshian, A., et al. (2017), Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3, J. Geophys. Res., 122, 4565-4577, doi:10.1002/2017JD026638.
- Brock, C., et al. (2016), Aerosol optical properties in the southeastern United States in summer – Part 1: Hygroscopic growth, Atmos. Chem. Phys., 16, 4987-5007, doi:10.5194/acp-16-4987-2016.
- Brock, C., et al. (2016), Aerosol optical properties in the southeastern United States in summer – Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters, Atmos. Chem. Phys., 16, 5009-5019, doi:10.5194/acp-16-5009-2016.
- Fisher, J. A., et al. (2016), Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC4RS) and ground-based (SOAS) observations in the Southeast US, Atmos. Chem. Phys., 16, 5969-5991, doi:10.5194/acp-16-5969-2016.
- Hu, W., et al. (2016), Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA), Atmos. Chem. Phys., 16, 11563-11580, doi:10.5194/acp-16-11563-2016.
- Liu, X., et al. (2016), Agricultural fires in the southeastern U.S. during SEAC4RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol, J. Geophys. Res., 121, 7383-7414, doi:10.1002/2016JD025040.
- Marais, E. A., et al. (2016), Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls, Atmos. Chem. Phys., 16, 1603-1618, doi:10.5194/acp-16-1603-2016.
- Nault, B., et al. (2016), Observational Constraints on the Oxidation of NOx in the Upper Troposphere, J. Phys. Chem. A, 120, 1468-1478, doi:10.1021/acs.jpca.5b07824.
- Peng, Z., et al. (2016), Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling, Atmos. Chem. Phys., 16, 4283-4305, doi:10.5194/acp-16-4283-2016.
- Shingler, T., et al. (2016), Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5km during the SEAC4RS campaign, J. Geophys. Res., 121, 4188-4210, doi:10.1002/2015JD024498.
- Barth, M. C., et al. (2015), The Deep Convective Clouds And Chemistry (Dc3) Field Campaign, Bull. Am. Meteorol. Soc., 1281-1310.
- Forrister, H., et al. (2015), Evolution of brown carbon in wildfire plumes, Geophys. Res. Lett., 42, 4623-4630, doi:10.1002/2015GL063897.
- Hu, W., et al. (2015), Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements, Atmos. Chem. Phys., 15, 11807-11833, doi:10.5194/acp-15-11807-2015.
- Liao, J., et al. (2015), Airborne organosulfates measurements over the continental US, J. Geophys. Res., 120, 2990-3005, doi:10.1002/2014JD022378.
- Liu, J., et al. (2015), Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing, Atmos. Chem. Phys., 15, 7841-7858, doi:10.5194/acp-15-7841-2015.
- Wagner, N. L., et al. (2015), In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft, Atmos. Chem. Phys., 15, 7085-7102, doi:10.5194/acp-15-7085-2015.
- Roberts, G., et al. (2010), Characterization of particle cloud droplet activity and composition in the free troposphere and the boundary layer during INTEX-B, Atmos. Chem. Phys., 10, 6627-6644, doi:10.5194/acp-10-6627-2010.
- Murphy, D., et al. (2004), Measurements of the sum of HO2NO2 and CH3O2NO2 in the remote troposphere, Atmos. Chem. Phys., 4, 377-384, doi:10.5194/acp-4-377-2004.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.