Organization
NASA Goddard Space Flight Center
Email
Business Phone
Work
(301) 614-6122
Business Address
Greenbelt, MD
United States
First Author Publications
-
Marshak, A., et al. (2024), License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic p, TYPE Original Research, 5, doi:10.3389/frsen.2024.1392596.
-
Marshak, A., et al. (2023), Aerosol Properties in Cloudy Environments from Remote Sensing Observations, Bull. Am. Meteorol. Soc., 102, E2177-E2197, doi:10.1175/BAMS-D-20-0225.1.
-
Marshak, A., et al. (2023), Editorial: DSCOVR EPIC/NISTAR: 5Years of Observing Earth From the First Lagrangian Point, 5 Years of Observing Earth From the First Lagrangian Point The Deep Space Climate Observatory (DSCOVR) was launched in February 2015 to a Sun-Earth, Lagrange-1, orbit, doi:10.3389/frsen.2022.963660.
-
Marshak, A., et al. (2018), Earth Observations From Dscovr Epic Instrument, Bull. Am. Meteorol. Soc., 1829-1850, doi:10.1175/BAMS-D-17-0223.1.
-
Marshak, A., et al. (2014), Extending 3D near-cloud corrections from shorter to longer wavelengths, J. Quant. Spectrosc. Radiat. Transfer, 147, 79-85, doi:10.1016/j.jqsrt.2014.05.022.
-
Marshak, A., et al. (2012), On spectral invariance of single scattering albedo for water droplets and ice crystals at weakly absorbing wavelengths, J. Quant. Spectrosc. Radiat. Transfer, 113, 715-720, doi:10.1016/j.jqsrt.2012.02.021.
-
Marshak, A., et al. (2011), Spectrally Invariant Approximation within Atmospheric Radiative Transfer, J. Atmos. Sci., 68, 3094-3111, doi:10.1175/JAS-D-11-060.1.
-
Marshak, A., et al. (2009), Spectral invariant behavior of zenith radiance around cloud edges observed by ARM SWS, Geophys. Res. Lett., 36, L16802, doi:10.1029/2009GL039366.
-
Marshak, A., et al. (2008), A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds, J. Geophys. Res., 113, D14S17, doi:10.1029/2007JD009196.
-
Marshak, A., et al. (2006), Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizes, J. Geophys. Res., 111, D09207, doi:10.1029/2005JD006686.
-
Marshak, A., et al. (2006), What does reflection from cloud sides tell us about vertical distribution of cloud droplet sizes?, Atmos. Chem. Phys., 6, 5295-5305, doi:10.5194/acp-6-5295-2006.
-
Marshak, A., et al. (2005), Small-Scale Drop-Size Variability: Empirical Models for Drop-Size-Dependent Clustering in Clouds, J. Atmos. Sci., 62, 551-558.
-
Marshak, A., et al. (2004), The ‘‘RED versus NIR’’ Plane to Retrieve Broken-Cloud Optical Depth from GroundBased Measurements, J. Atmos. Sci., 61, 1911-1925.
-
Marshak, A., et al. (2000), Cloud – vegetation interaction: use of Normalized Difference Cloud Index for estimation of cloud optical thickness, Geophys. Res. Lett., 27, 1695-1698, doi:10.1029/1999GL010993.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Delgado-Bonal, A., et al. (2024), Global cloud optical depth daily variability based on DSCOVR/ EPIC observations, TYPE Original Research, doi:10.3389/frsen.2024.1390683.
-
Alexandrov, M.D., et al. (2022), Markovian Statistical Model of Cloud Optical Thickness. Part I: Theory and Examples, J. Atmos. Sci., 79, 3315-3332, doi:10.1175/JAS-D-22-0125.1.
-
Wen, G., and A. Marshak (2022), Precipitable Water Vapor Variation in the Clear-Cloud Transition Zone From the ARM Shortwave Spectrometer, IEEE Geosci. Remote Sens. Lett., 19, 1002005, doi:10.1109/LGRS.2021.3064334.
-
Epic:, V.2.M.A., et al. (2021), Atmospheric Correction of DSCOVR, Front. Remote Sens., 2, 748362, doi:10.3389/frsen.2021.748362.
-
Lyapustin, A., et al. (2021), Retrievals of Aerosol Optical Depth and Spectral Absorption From, Front. Remote Sens., 2, 645794, doi:10.3389/frsen.2021.645794.
-
Valero, F., et al. (2021), Lagrange Point Missions: The Key to next Generation Integrated Earth Observations. DSCOVR Innovation, DSCOVR Innovation. Front. Remote Sens., 2, 745938, doi:10.3389/frsen.2021.745938.
-
Várnai, T., and A. Marshak (2021), Analysis of Near-Cloud Changes in Atmospheric Aerosols Using Satellite Observations and Global Model Simulations, Remote Sens., 13, 1151, doi:10.3390/rs13061151.
-
Delgado‐Bonal, A., et al. (2020), Daytime Variability of Cloud Fraction From DSCOVR/EPIC Observations, J. Geophys. Res., 125, 1-11, doi:10.1029/2019JD031488.
-
Spencer, R.S., et al. (2019), Exploring Aerosols Near Clouds With High‐Spatial‐ Resolution Aircraft Remote Sensing During SEAC4RS, J. Geophys. Res..
-
Yang, Y., et al. (2019), Cloud products from the Earth Polychromatic Imaging Camera (EPIC): algorithms and initial evaluation, Atmos. Meas. Tech., 12, 2019-2031, doi:10.5194/amt-12-2019-2019.
-
Davis, A.B., et al. (2018), Cloud information content in EPIC/DSCOVR’s oxygen A- and B-band channels: A physics-based approach, J. Quant. Spectrosc. Radiat. Transfer, 220, 84-96, doi:10.1016/j.jqsrt.2018.09.006.
-
Davis, A.B., et al. (2018), Cloud information content in EPIC/DSCOVR’s oxygen A- and B-band channels: An optimal estimation approach, J. Quant. Spectrosc. Radiat. Transfer, 216, 6-16, doi:10.1016/j.jqsrt.2018.05.007.
-
Várnai, T., and A. Marshak (2018), Satellite Observations of Cloud-Related Variations in Aerosol Properties, Atmosphere, 9, 430, doi:10.3390/atmos9110430.
-
Alexandrov, M.D., and A. Marshak (2017), Cellular Statistical Models of Broken Cloud Fields. Part III: Markovian Properties, J. Atmos. Sci., 74, 2921-2935, doi:10.1175/JAS-D-17-0075.1.
-
Várnai, T., et al. (2017), Observation-Based Study on Aerosol Optical Depth and Particle Size in Partly Cloudy Regions, J. Geophys. Res., 122, 10,013-10,024, doi:10.1002/2017JD027028.
-
Yang, Y., et al. (2017), Snow grain size retrieval over the polar ice sheets with the Ice, Cloud, and land Elevation Satellite (ICESat) observations, J. Quant. Spectrosc. Radiat. Transfer, 188, 159-164, doi:10.1016/j.jqsrt.2016.03.033.
-
Alexandrov, M.D., et al. (2016), New Statistical Model for Variability of Aerosol Optical Thickness: Theory and Application to MODIS Data over Ocean*, J. Atmos. Sci., 73, 821-837, doi:10.1175/JAS-D-15-0130.1.
-
Wen, G., et al. (2016), Testing the two-layer model for correcting near-cloud reflectance enhancement using LES/SHDOM-simulated radiances, J. Geophys. Res., 121, 9661-9674, doi:10.1002/2016JD025021.
-
Zhang, Z., et al. (2016), A framework based on 2-D Taylor expansion for quantifying the impacts of subpixel reflectance variance and covariance on cloud optical thickness and effective radius retrievals based on the bispectral method, J. Geophys. Res., 121, 7007-7025, doi:10.1002/2016JD024837.
-
Knobelspiesse, K.D., et al. (2015), Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers, Atmos. Meas. Tech., 8, 1537-1554, doi:10.5194/amt-8-1537-2015.
-
Várnai, T., and A. Marshak (2015), Effect of cloud fraction on near-cloud aerosol behavior in the MODIS atmospheric correction ocean color product. , Remote Sens., 7, 5283-5299, doi:10.3390/rs70505283.
-
Várnai, T., and A. Marshak (2014), Near-cloud aerosol properties from the 1 km resolution MODIS ocean product, J. Geophys. Res., 119, 1546-1554, doi:10.1002/2013JD020633.
-
Yang, W., et al. (2014), CALIPSO observations of near-cloud aerosol properties as a function of cloud fraction, Geophys. Res. Lett., 41, doi:10.1002/2014GL061896.
-
Yang, Y., et al. (2014), First Satellite-detected Perturbations of Outgoing Longwave Radiation Associated with Blowing Snow Events over Antarctica, Geophys. Res. Lett., 41, 730-735, doi:10.1002/2013GL058932.
-
Várnai, T., et al. (2013), Multi-satellite aerosol observations in the vicinity of clouds, Atmos. Chem. Phys., 13, 3899-3908, doi:10.5194/acp-13-3899-2013.
-
Wen, G., et al. (2013), Improvement of MODIS aerosol retrievals near clouds, J. Geophys. Res., 118, 1-14, doi:10.1002/jgrd.50617.
-
Yang, W., et al. (2013), Shape-induced gravitational sorting of Saharan dust during transatlantic voyage: Evidence from CALIOP lidar depolarization measurements, Geophys. Res. Lett., 40, 1-6, doi:10.1002/grl.50603.
-
Yang, Y., et al. (2013), Assessment of Cloud Screening With Apparent Surface Reflectance in Support of the ICESat-2 Mission, IEEE Trans. Geosci. Remote Sens., 51, 1037-1045, doi:10.1109/TGRS.2012.2204066.
-
Yang, Y., et al. (2013), A method of retrieving cloud top height and cloud geometrical thickness with oxygen A and B bands for the Deep Space Climate Observatory (DSCOVR) mission: Radiative transfer simulations, J. Quant. Spectrosc. Radiat. Transfer, 122, 141-149, doi:10.1016/j.jqsrt.2012.09.017.
-
Chiu, J.C., et al. (2012), Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network, Atmos. Chem. Phys., 12, 10313-10329, doi:10.5194/acp-12-10313-2012.
-
Knyazikhin, Y., et al. (2012), Hyperspectral remote sensing of foliar nitrogen content, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1210196109.
-
Korkin, S., et al. (2012), On the accuracy of double scattering approximation for atmospheric polarization computations, J. Quant. Spectrosc. Radiat. Transfer, 113, 172-181, doi:10.1016/j.jqsrt.2011.10.008.
-
Várnai, T., and A. Marshak (2012), Analysis of co-located MODIS and CALIPSO observations near clouds, Atmos. Meas. Tech., 5, 389-396, doi:10.5194/amt-5-389-2012.
-
Vogelmann, A.M., et al. (2012), Racoro Extended-Term Aircraft Observations Of Boundary Layer Clouds, Bull. Am. Meteorol. Soc., 861-878, doi:10.1175/BAMS-D-11-00189.1.
-
Yang, W., et al. (2012), CALIPSO observations of transatlantic dust: vertical stratification and effect of clouds, Atmos. Chem. Phys., 12, 11339-11354, doi:10.5194/acp-12-11339-2012.
-
Yang, W., et al. (2012), Effect of CALIPSO cloud–aerosol discrimination (CAD) confidence levels on observations of aerosol properties near clouds, Atmos. Res., 116, 134-141, doi:10.1016/j.atmosres.2012.03.013.
-
Martins, J.V., et al. (2011), Remote sensing the vertical profile of cloud droplet effective radius, thermodynamic phase, and temperature, Atmos. Chem. Phys., 11, 9485-9501, doi:10.5194/acp-11-9485-2011.
-
Palm, S.P., et al. (2011), Satellite remote sensing of blowing snow properties over Antarctica, J. Geophys. Res., 116, D16123, doi:10.1029/2011JD015828.
-
Várnai, T., and A. Marshak (2011), Global CALIPSO Observations of Aerosol Changes Near Clouds, Geosci. Remote Sens. Lett., 8, 19-23, doi:10.1109/LGRS.2010.2049982.
-
Yang, Y., et al. (2011), Cloud Impact on Surface Altimetry From a Spaceborne 532-nm Micropulse Photon-Counting Lidar: System Modeling for Cloudy and Clear Atmospheres, IEEE Trans. Geosci. Remote Sens., 49, 4910-4919, doi:10.1109/TGRS.2011.2153860.
-
Abdalati, W., et al. (2010), The ICESat-2 Laser Altimetry Mission Planned to launch in 2015, ICEsat-2 will measure changes in polar ice coverage and estimate changes in the Earth’s bio-mass by measuring vegetation canopy height., Proceedings of the IEEE 735, 98, 18-9219, doi:10.1109/JPROC.2009.2034765.
-
Alexandrov, M.D., et al. (2010), Cellular Statistical Models of Broken Cloud Fields. Part I: Theory, J. Atmos. Sci., 67, 2125-2151, doi:10.1175/2010JAS3364.1.
-
Alexandrov, M.D., et al. (2010), Cellular Statistical Models of Broken Cloud Fields. Part II: Comparison with a Dynamical Model and Statistics of Diverse Ensembles, J. Atmos. Sci., 67, 2152-2170, doi:10.1175/2010JAS3365.1.
-
Chiu, J.C., et al. (2010), Spectrally-invariant behavior of zenith radiance around cloud edges simulated by radiative transfer, Atmos. Chem. Phys., 10, 11295-11303, doi:10.5194/acp-10-11295-2010.
-
Davis, A.B., and A. Marshak (2010), Solar radiation transport in the cloudy atmosphere: A 3D perspective on observations and climate impacts, Reports on Progress in Physics, 73, 26801-26870, doi:10.1088/0034-4885/73/2/026801.
-
Lyapustin, A., et al. (2010), Analysis of snow bidirectional reflectance from ARCTAS Spring-2008 Campaign, Atmos. Chem. Phys., 10, 4359-4375, doi:10.5194/acp-10-4359-2010.
-
Yang, Y., et al. (2010), Uncertainties in Ice-Sheet Altimetry From a Spaceborne 1064-nm Single-Channel Lidar Due to Undetected Thin Clouds, IEEE Trans. Geosci. Remote Sens., 48, 250-259, doi:10.1109/TGRS.2009.2028335.
-
Davis, A.B., et al. (2009), Space‐Time Green Functions for Diffusive Radiation Transport, in Application to Active and Passive Cloud Probing, Light Scattering Reviews, 4, 169-292.
-
Kato, S., and A. Marshak (2009), Solar zenith and viewing geometry-dependent errors in satellite retrieved cloud optical thickness: Marine stratocumulus case, J. Geophys. Res., 114, D01202, doi:10.1029/2008JD010579.
-
Prigarin, S.M., and A. Marshak (2009), A Simple Stochastic Model for Generating Broken Cloud Optical Depth and Cloud-Top Height Fields, J. Atmos. Sci., 66, 92-104, doi:10.1175/2008JAS2699.1.
-
Várnai, T., and A. Marshak (2009), MODIS observations of enhanced clear sky reflectance near clouds, Geophys. Res. Lett., 36, L06807, doi:10.1029/2008GL037089.
-
Evans, F., et al. (2008), The Potential for Improved Boundary Layer Cloud Optical Depth Retrievals from the Multiple Directions of MISR, J. Atmos. Sci., 65, 3179-3196, doi:10.1175/2008JAS2627.1.
-
Wen, G., et al. (2008), Importance of molecular Rayleigh scattering in the enhancement of clear sky reflectance in the vicinity of boundary layer cumulus clouds, J. Geophys. Res., 113, D24207, doi:10.1029/2008JD010592.
-
Yang, Y., et al. (2008), Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter System (GLAS) by Calibration of Solar Background Signal, J. Atmos. Sci., 65, 3513-3527, doi:10.1175/2008JAS2744.1.
-
Zinner, T., et al. (2008), Remote sensing of cloud sides of deep convection: towards a three-dimensional retrieval of cloud particle size profiles, Atmos. Chem. Phys., 8, 4741-4757, doi:10.5194/acp-8-4741-2008.
-
Vant-Hull, B., et al. (2007), The Effects of Scattering Angle and Cumulus Cloud Geometry on Satellite Retrievals of Cloud Droplet Effective Radius, IEEE Trans. Geosci. Remote Sens., 45, 1039-1045, doi:10.1109/TGRS.2006.890416.
-
Várnai, T., and A. Marshak (2007), View angle dependence of cloud optical thicknesses retrieved by Moderate Resolution Imaging Spectroradiometer (MODIS), J. Geophys. Res., 112, D06203, doi:10.1029/2005JD006912.
-
Wen, G., et al. (2007), 3-D aerosol-cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields, J. Geophys. Res., 112, D13204, doi:10.1029/2006JD008267.
-
Chiu, J.C., et al. (2006), Remote sensing of cloud properties using ground-based measurements of zenith radiance, J. Geophys. Res., 111, D16201, doi:10.1029/2005JD006843.
-
Wen, G., et al. (2006), Impact of 3-D Clouds on Clear-Sky Reflectance and Aerosol Retrieval in a Biomass Burning Region of Brazil, IEEE Geosci. Remote Sens. Lett., 3, 169-172, doi:10.1109/LGRS.2005.861386.
-
Cahalan, B., et al. (2005), The I3RC: Bringing Together the Most Advanced Radiative Transfer Tools for Cloudy Atmospheres, Bull. Am. Meteorol. Soc., 1275-1293, doi:10.1175/BAMS-86-9-1275.
-
Knyazikhin, Y., et al. (2005), Small-Scale Drop Size Variability: Impact on Estimation of Cloud Optical Properties, J. Atmos. Sci., 62, 2555-2567.
-
Alexandrov, M.D., et al. (2004), Automated cloud screening algorithm for MFRSR data, Geophys. Res. Lett., 31, L04118, doi:10.1029/2003GL019105.
-
Alexandrov, M.D., et al. (2004), Scaling Properties of Aerosol Optical Thickness Retrieved from Ground-Based Measurements, J. Atmos. Sci., 61, 1024-1039.
-
Davis, A.B., and A. Marshak (2004), Photon propagation in heterogeneous optical media with spatial correlations: enhanced mean-free-paths and wider-than-exponential free-path distributions, J. Quant. Spectrosc. Radiat. Transfer, 84, 3-34, doi:10.1016/S0022-4073.
-
Várnai, T., and A. Marshak (2003), A method for analyzing how various parts of clouds influence each other’s brightness, J. Geophys. Res., 108, 4706, doi:10.1029/2003JD003561.
-
Barker, H., et al. (2002), Inference of Cloud Optical Depth from Aircraft-Based Solar Radiometric Measurements, J. Atmos. Sci., 59, 2093-2111.
-
Davis, A.B., and A. Marshak (2002), Space–Time Characteristics of Light Transmitted through Dense Clouds: A Green’s Function Analysis, J. Atmos. Sci., 59, 2713-2727, doi:10.1175/1520-0469(2002)059<2713:STCOLT>2.0.CO;2.
-
Knyazikhin, Y., et al. (2002), A Missing Solution to the Transport Equation and Its Effect on Estimation of Cloud Absorptive Properties, J. Atmos. Sci., 59, 3572-3585.
-
Várnai, T., and A. Marshak (2002), Observations of Three-Dimensional Radiative Effects that Influence MODIS Cloud Optical Thicknéss Rétrievals, J. Atmos. Sci., 59, 1607-1618.
-
Barker, H., and A. Marshak (2001), Inferring Optical Depth of Broken Clouds above Green Vegetation Using Surface Solar Radiometric Measurements, J. Atmos. Sci., 58, 2989-3006.
-
Davis, A.B., and A. Marshak (2001), Multiple Scattering in Clouds: Insights from Three-Dimensional Diffusion/P1 Theory, Nuclear Science and Engineering, 137, 251-280, doi:10.13182/NSE01-A2190.
-
Várnai, T., and A. Marshak (2001), Statistical Analysis of the Uncertainties in Cloud Optical Depth Retrievals Caused by Three-Dimensionál Radíative Effects, J. Atmos. Sci., 58, 1540-1548.
-
Oreopoulos, L., et al. (2000), Cloud three-dimensional effects evidenced in Landsat spatial power spectra and autocorrelation functions, J. Geophys. Res., 105, 14777-14788.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.