B-200 (UC-12B) - LARC

Synonyms
UC-12B - LARC
UC-12B
UC-12
UC12B
UC12
High Altitude Lidar Observatory

The NASA Langley High Altitude Lidar Observatory (HALO) is used to characterize distributions of greenhouse gasses, and clouds and small particles in the atmosphere, called aerosols. From an airborne platform, the HALO instrument provides nadir-viewing profiles of water vapor, methane columns, and profiles of aerosol and cloud optical properties, which are used to study aerosol impacts on radiation, clouds, air quality, and methane emissions.  When the water vapor, aerosol and cloud products are combined it provides one of the most comprehensive data sets available to study aerosol cloud interactions.  HALO is also configured to provide in the future measurements of the near-surface ocean, including depth-resolved subsurface backscatter and attenuation.

Instrument Type
Point(s) of Contact
High Spectral Resolution Lidar 2

The NASA Langley airborne High-Spectral-Resolution Lidar – Generation 2 (HSRL-2) is used to characterize clouds and small particles in the atmosphere, called aerosols. From an airborne platform, the HSRL-2 instrument provides nadir-viewing profiles of aerosol and cloud optical and microphysical properties, which are used studies aerosol impacts on radiation, clouds, and air quality. HSRL-2 also provides measurements of the near-surface ocean, including depth-resolved subsurface backscatter and attenuation. HSRL-2 can also be configured to utilize the differential absorption (DIAL) technique for measuring profiles of ozone concentrations in addition to the above products.

Instrument Type
Point(s) of Contact
In Situ Airborne Formaldehyde

The NASA GSFC In Situ Airborne Formaldehyde (ISAF) instrument measures formaldehyde (CH2O) on both pressurized and unpressurized (high-altitude) aircraft. Using laser induced fluorescence (LIF), ISAF possesses the high sensitivity, fast time response, and dynamic range needed to observe CH2O throughout the troposphere and lower stratosphere, where concentrations can range from 10 pptv to hundreds of ppbv.

Formaldehyde is produced via the oxidation of hydrocarbons, notably methane (a ubiquitous greenhouse gas) and isoprene (the primary hydrocarbon emitted by vegetation). Observations of CH2O can thus provide information on many atmospheric processes, including:
- Convective transport of air from the surface to the upper troposphere
- Emissions of reactive hydrocarbons from cities, forests, and fires
- Atmospheric oxidizing capacity, which relates to formation of ozone and destruction of methane
In situ observations of CH2O are also crucial for validating retrievals from satellite instruments, such as OMI, TROPOMI, and TEMPO.

Instrument Type
Measurements
Point(s) of Contact
B-200 (UC-12B) - LARC
Current Status
Open

The NASA Langley Beechcraft UC-12B Huron (NASA 528) is an all-metal, twin-turboprop research aircraft.  The UC-12B aircraft is a military version of a Beechcraft B200 King Air.  NASA Langley acquired this aircraft in 2007 from the U.S. Marine Corps.  The aircraft has been modified with two nadir-viewing ports:  29.5 x 29.5-in. in the forward section of the passenger cabin and 26.75 x 22.5 in.

Doppler Aerosol WiNd Lidar

The NASA Langley Research Center DAWN (Doppler Aerosol WiNd) lidar system employs a pulsed, solid-state laser operating at 2053 nm wavelength. It pulses at 10 Hz with up to 100 mJ/pulse which are 180 ns long. Using a wedge scanner, several different azimuth angles can be measured below the aircraft, all at a 30 degree off-nadir angle. Multiple azimuth angles enable horizontal wind calculation, mitigate cloud obscurations, and measure atmospheric variability. DAWN can provide vertical profiles of the zonal (u) and meridional (v) components of the horizontal wind below the aircraft, typically at ~60 meter resolution. Various vertical and horizontal resolutions are possible in post processing. DAWN can also provide vertical profiles of line of sight (LOS) wind speed at each azimuth angle. It can also be operated to stare persistently at any particular azimuth angle to simulate what a satellite such as European Space Agency Atmospheric Dynamics Mission (ADM) Aeolus would observe. DAWN signal returns also permit retrieval of vertical profiles of relative aerosol backscatter, planetary boundary layer height, and wind turbulence.

Instrument Type
Point(s) of Contact
Multi-functional Fiber Laser Lidar

The MFLL is an airborne lidar system, a single-beam multi-pixel laser altimeter using PRN (Pseudo Random Noise) modulated fiber lasers. The instrument has been developed under a NASA ESTO (Earth Science Technology Office) IIP (Instrument Incubator Program) grant for Climate Change research and Exploration. The major goal of MFLL is to demonstrate the required lidar technology concept for the LAS (Laser Absorption Spectrometer) to be flown on the future spaceborne ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission of NASA. The airborne MFLL is the prototype of the future LAS instrument, it is also referred to as ITT's CO2 EDU (Engineering Development Unit) for ASCENDS. ITT Geospatial Systems of Fort Wayne, Indiana is the developer of the instrument. NASA/LaRC (Langley Research Center) in Hampton, VA is the operator of the MFLL instrument and is providing flight data analysis.

Instrument Type
Measurements
Point(s) of Contact