The UC Berkeley thermal-dissociation laser-induced fluorescence (TD- LIF) instrument detects NO2 directly and detects total peroxynitrates (ΣPNs ≡ PAN + PPN +N2O5 + HNO4. . .), total alkyl- and other thermally stable organic nitrates (ΣANs), and HNO3 following thermal dissociation of these NOy species to NO2. The sensitivity for NO2 at 1 Hz is 30 pptv (S/N=2) with a slope uncertainty of 5%. The uncertainties for the dissociated species are 10% for ΣPNs and 15% for ΣANs and HNO3.
Thermal-Dissociation Laser Induced Fluorescence
Instrument Type
Aircraft
Recent Missions
Point(s) of Contact
(POC; PI),
(Mgr)
Range of Measurement
In situ
Mission-Specific Writeups
Document
Publications
Wooldridge, P.J., et al. (2010), Total Peroxy Nitrates ( PNs) in the atmosphere: the Thermal Dissociation-Laser Induced Fluorescence (TD-LIF) technique and comparisons to speciated PAN measurements, Atmos. Meas. Tech., 3, 593-607, doi:10.5194/amt-3-593-2010.
Day, D.A., et al. (2002), A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3, J. Geophys. Res., 107, doi:10.1029/2001JD000779.
Cleary, P.A., et al. (2002), Laser-induced fluorescence detection of atmospheric NO2 with a commercial diode laser and a supersonic expansion, Appl. Opt., 41, 6950-6956.
Thornton, ., et al. (2000), Atmospheric NO2: In Situ Laser-Induced Fluorescence Detection at Parts per Trillion Mixing Ratios, Anal. Chem., 72, 528-539, doi:10.1021/ac9908905.
Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.