The role of monsoon-like zonally asymmetric heating in interhemispheric transport

Chen, G., C. Orbe, and D. Waugh (2017), The role of monsoon-like zonally asymmetric heating in interhemispheric transport, J. Geophys. Res., 122, 3282-3298, doi:10.1002/2016JD026427.
Abstract

While the importance of the seasonal migration of the zonally averaged Hadley circulation on interhemispheric transport of trace gases has been recognized, few studies have examined the role of the zonally asymmetric monsoonal circulation. This study investigates the role of monsoon-like zonally asymmetric heating on interhemispheric transport using a dry atmospheric model that is forced by idealized Newtonian relaxation to a prescribed radiative equilibrium temperature. When only the seasonal cycle of zonally symmetric heating is considered, the mean age of air in the Southern Hemisphere since last contact with the Northern Hemisphere midlatitude boundary layer is much larger than the observations. The introduction of monsoon-like zonally asymmetric heating not only reduces the mean age of tropospheric air to more realistic values but also produces an upper tropospheric cross-equatorial transport pathway in boreal summer that resembles the transport pathway simulated in the NASA Global Modeling Initiative Chemistry Transport Model driven with Modern-Era Retrospective Analysis for Research and Applications meteorological fields. These results highlight that the monsoon-induced eddy circulation plays an important role in the interhemispheric transport of long-lived chemical constituents.

PDF of Publication
Download from publisher's website
Research Program
Atmospheric Composition Modeling and Analysis Program (ACMAP)

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.