Organization
Colorado State University
Email
Business Phone
Mobile
(970) 443-1830
Business Address
Department of Atmospheric Science
3915 W. Laporte Ave.
Fort Collins, CO 80521
United States
First Author Publications
-
van den Heever, S., et al. (2006), Impacts of Nucleating Aerosol on Florida Storms. Part I: Mesoscale Simulations, J. Atmos. Sci., 63, 1752-1775.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Dagan, G.1.✉., et al. (2022), Boundary conditions representation can determine simulated aerosol effects on convective cloud fields, Nature, doi:10.1038/s43247-022-00399-5.
-
Gettelman, A., et al. (2022), The Authors, some The future of Earth system prediction: Advances rights reserved; exclusive licensee in model-data fusion American Association for the Advancement of Science. No claim to, Science Advances , Review, 8, 2022.
-
Sokolowsky, G.A., et al. (2022), Sensitivities of Maritime Tropical Trimodal Convection to Aerosols and Boundary Layer Static Stability, J. Atmos. Sci., 79, 2549-2570, doi:10.1175/JAS-D-21-0260.1.
-
Marinescu, P.J., et al. (2021), Impacts of Varying Concentrations of Cloud Condensation Nuclei on Deep Convective Cloud Updrafts—A Multimodel Assessment, J. Atmos. Sci., 78, 1147-1172, doi:10.1175/JAS-D-20-0200.1.
-
Scott, B., et al. (2021), Aerosol, Cloud, Convection, and Precipitation (ACCP) Science & Applications, tech., report.
-
Dellaripa, E.M.R., et al. (2020), Topographic Effects on the Luzon Diurnal Cycle during the BSISO, J. Atmos. Sci., 77, 3-29, doi:10.1175/JAS-D-190046.s1.
-
Freeman, S.W., et al. (2019), RESEARCH ARTICLE Relative sensitivities of simulated rainfall to fixed shape parameters and collection efficiencies, Q. J. R. Meteorol. Soc., 24, 12-2201, doi:10.1002/qj.3550.
-
Kalmus, P., et al. (2019), Trajectory-Enhanced AIRS Observations of Environmental Factors Driving Severe Convective Storms, Mon. Wea. Rev., 147, 1633-1653, doi:10.1175/MWR-D-18-0055.1.
-
Marinescu, P.J., et al. (2019), Quantifying aerosol size distributions and their temporal variability in the Southern Great Plains, USA, Atmos. Chem. Phys., 19, 11985-12006, doi:10.5194/acp-19-11985-2019.
-
Nelson, E.L., et al. (2019), On The Web An Interactive Online Educational Applet for Multiple Frequencies of Radar Observations, Bull. Am. Meteorol. Soc., 747-752, doi:10.1175/BAMS-D-18-0249.1.
-
Grant, L.D., and S. van den Heever (2018), Cold Pool-Land Surface Interactions in a Dry Continental Environment, J. Adv. Modeling Earth Syst., 10, 1513-1526, doi:10.1029/2018MS001323.
-
Jensen, E.J., et al. (2018), The Life Cycles of Ice Crystals Detrained From the Tops of Deep Convection, J. Geophys. Res., 123, 9624-9634, doi:10.1029/2018JD028832.
-
Naud, C.M., et al. (2018), CORRESPONDENCE Reply to ‘‘Comments on ‘A CloudSat–CALIPSO View of Cloud and Precipitation Properties across Cold Fronts over the Global Oceans’’’, J. Climate, 31, 2969, doi:10.1175/JCLI-D-17-0777.1.
-
Igel, A.L., and S. van den Heever (2017), The role of the gamma function shape parameter in determining differences between condensation rates in bin and bulk microphysics schemes, Atmos. Chem. Phys., 17, 4599-4609, doi:10.5194/acp-17-4599-2017.
-
Igel, A.L., and S. van den Heever (2017), The Importance of the Shape of Cloud Droplet Size Distributions in Shallow Cumulus Clouds. Part I: Bin Microphysics Simulations, J. Atmos. Sci., 74, 249-258, doi:10.1175/JAS-D-15-0382.1.
-
Igel, A.L., and S. van den Heever (2017), The Importance of the Shape of Cloud Droplet Size Distributions in Shallow Cumulus Clouds. Part II: Bulk Microphysics Simulations, J. Atmos. Sci., 74, 259-273, doi:10.1175/JAS-D-15-0383.1.
-
Naud, C.M., et al. (2017), Observed Covariations of Aerosol Optical Depth and Cloud Cover in Extratropical Cyclones, J. Geophys. Res., 122, 10,338-10,356, doi:10.1002/2017JD027240.
-
Stolz, D.C., et al. (2017), A global lightning parameterization based on statistical relationships among environmental factors, aerosols, and convective clouds in the TRMM climatology, J. Geophys. Res., 122, 7461-7492, doi:10.1002/2016JD026220.
-
Twohy, C.H., et al. (2017), Saharan dust, convective lofting, aerosol enhancement zones, and potential impacts on ice nucleation in the tropical upper troposphere, J. Geophys. Res., 122, 8833-8851, doi:10.1002/2017JD026933.
-
Naud, C.M., et al. (2016), Aerosol optical depth distribution in extratropical cyclones over the Northern Hemisphere oceans, Geophys. Res. Lett., 43, 10,504-10,511, doi:10.1002/2016GL070953.
-
Nelson, E.L., et al. (2016), Toward an Algorithm for Estimating Latent Heat Release in Warm Rain Systems, J. Atmos. Oceanic Technol., 33, 1309-1329, doi:10.1175/JTECH-D-15-0205.1.
-
Igel, A.L., et al. (2015), Make It a Double? Sobering Results from Simulations Using Single-Moment Microphysics Schemes, J. Atmos. Sci., 72, 910-925, doi:10.1175/JAS-D-14-0107.1.
-
Igel, M., and S. van den Heever (2015), Tropical, oceanic, deep convective cloud morphology as observed by CloudSat, Atmos. Chem. Phys. Discuss., 15, 15977-16017, doi:10.5194/acpd-15-15977-2015.
-
Igel, M., and S. van den Heever (2015), The relative influence of environmental characteristics on tropical deep convective morphology as observed by CloudSat, J. Geophys. Res., 120, 4304-4322, doi:10.1002/2014JD022690.
-
King, J.M., et al. (2015), Observed and Modeled Warm Rainfall Occurrence and Its Relationships with Cloud Macrophysical Properties, J. Atmos. Sci., 72, 4075-4090, doi:10.1175/JAS-D-14-0368.1.
-
Naud, C.M., et al. (2015), A CloudSat–CALIPSO View of Cloud and Precipitation Properties across Cold Fronts over the Global Oceans, J. Climate, 28, 6743-6762, doi:10.1175/JCLI-D-15-0052.1.
-
Saleeby, S.M., et al. (2015), Impacts of Cloud Droplet–Nucleating Aerosols on Shallow Tropical Convection, J. Atmos. Sci., 72, 1369-1385, doi:10.1175/JAS-D-14-0153.1.
-
Sheffield, A.M., et al. (2015), Aerosol-induced mechanisms for cumulus congestus growth, J. Geophys. Res., 120, 8941-8952, doi:10.1002/2015JD023743.
-
Igel, A.L., and S. van den Heever (2014), The role of latent heating in warm frontogenesis, Q. J. R. Meteorol. Soc., 140, 139-150, doi:10.1002/qj.2118.
-
Igel, M., et al. (2014), Convective-scale responses of a large-domain, modelled tropical environment to surface warming, Q. J. R. Meteorol. Soc., 140, 1333-1343, doi:10.1002/qj.2230.
-
Igel, M., et al. (2014), A CloudSat cloud object partitioning technique and assessment and integration of deep convective anvil sensitivities to sea surface temperature, J. Geophys. Res., 119, 10,515-10,535, doi:10.1002/2014JD021717.
-
Mcgee, C.J., and S. van den Heever (2014), Latent Heating and Mixing due to Entrainment in Tropical Deep Convection, J. Atmos. Sci., 71, 816-832, doi:10.1175/JAS-D-13-0140.1.
-
Storer, R.L., et al. (2014), Observations of aerosol-induced convective invigoration in the tropical east Atlantic, J. Geophys. Res., 119, 3963-3975, doi:10.1002/2013JD020272.
-
Igel, A.L., et al. (2013), Sensitivity of Warm-Frontal Processes to Cloud-Nucleating Aerosol Concentrations, J. Atmos. Sci., 70, 1768-1783, doi:10.1175/JAS-D-12-0170.1.
-
Naud, C.M., et al. (2013), Multiple satellite observations of cloud cover in extratropical cyclones, J. Geophys. Res., 118, 9982-9996, doi:10.1002/jgrd.50718.
-
Seigel, R.B., et al. (2013), Mineral dust indirect effects and cloud radiative feedbacks of a simulated idealized nocturnal squall line, Atmos. Chem. Phys., 13, 4467-4485, doi:10.5194/acp-13-4467-2013.
-
Naud, C.M., et al. (2012), Observational Analysis of Cloud and Precipitation in Midlatitude Cyclones: Northern versus Southern Hemisphere Warm Fronts, J. Climate, 25, 5135-5151, doi:10.1175/JCLI-D-11-00569.1.
-
Posselt, D.J., et al. (2012), Changes in the Interaction between Tropical Convection, Radiation, and the Large-Scale Circulation in a Warming Environment, J. Climate, 25, 557-571, doi:10.1175/2011JCLI4167.1.
-
Suzuki, K., et al. (2011), Diagnosis of the Warm Rain Process in Cloud-Resolving Models Using Joint CloudSat and MODIS Observations, J. Atmos. Sci., 68, 2655-2670, doi:10.1175/JAS-D-10-05026.1.
-
Saleeby, S.M., et al. (2010), Impact of Cloud-Nucleating Aerosols in Cloud-Resolving Model Simulations of Warm-Rain Precipitation in the East China Sea, J. Atmos. Sci., 67, 3916-3930, doi:10.1175/2010JAS3528.1.
-
Storer, R.L., et al. (2010), Modeling Aerosol Impacts on Convective Storms in Different Environments, J. Atmos. Sci., 67, 3904-3915, doi:10.1175/2010JAS3363.1.
-
Twohy, C.H., et al. (2009), Saharan dust particles nucleate droplets in eastern Atlantic clouds, Geophys. Res. Lett., 36, L01807, doi:10.1029/2008GL035846.
-
Wang, J., et al. (2009), A conceptual model for the link between Central American biomass burning aerosols and severe weather over the south central United States, Environ. Res. Lett., 4, 015003, doi:10.1088/1748-9326/4/1/015003.
-
Wang, J., et al. (2009), A conceptual model for the link between Central American biomass burning aerosols and severe weather over the south central United States, Iop Publishing Environmental Research Letters, 1748-9326, doi:10.1088/1748-9326/4/1/015003.
-
Berg, W., et al. (2008), Evidence for the impact of aerosols on the onset and microphysical properties of rainfall from a combination of satellite observations and cloud-resolving model simulations, J. Geophys. Res., 113, D14S23, doi:10.1029/2007JD009649.
-
Carrió, G.G., et al. (2007), Impacts of nucleating aerosol on anvil-cirrus clouds: A modeling study, Atmos. Res., 84, 111-131, doi:10.1016/j.atmosres.2006.06.002.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.