Organization
NASA Langley Research Center
Email
Business Address
Hampton, VA
United States
First Author Publications
-
Painemal, D., et al. (2023), Wintertime Synoptic Patterns of Midlatitude Boundary Layer Clouds Over the Western North Atlantic: Climatology and Insights From In Situ ACTIVATE Observations, J. Geophys. Res., 128, e2022JD037725, doi:10.1029/2022JD037725.
-
Painemal, D., et al. (2023), Wintertime Synoptic Patterns of Midlatitude Boundary Layer Clouds Over the Western North Atlantic: Climatology and Insights From In Situ ACTIVATE Observations, J. Geophys. Res., 128, e2022JD037725, doi:10.1029/2022JD037725.
-
Painemal, D., et al. (2021), All Rights Reserved. An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast— Part 2: Circulation, Boundary Layer, and Clouds, J. Geophys. Res., 126, e2020JD033423, doi:10.1029/2020JD033423.
-
Painemal, D., et al. (2020), Reducing uncertainties in satellite estimates of aerosol–cloud interactions over the subtropical ocean by integrating vertically resolved aerosol observations, Atmos. Chem. Phys., 20, 7167-7177, doi:10.5194/acp-20-7167-2020.
-
Painemal, D., et al. (2017), Aerosol and cloud microphysics covariability in the northeast Pacific boundary layer estimated with ship-based and satellite remote sensing observations, J. Geophys. Res., 122, 2403-2418, doi:10.1002/2016JD025771.
-
Painemal, D., et al. (2017), Entrainment rate diurnal cycle in marine stratiform clouds estimated from geostationary satellite retrievals and a meteorological forecast model, Geophys. Res. Lett., 44, doi:10.1002/2017GL074481.
-
Painemal, D., et al. (2016), First extended validation of satellite microwave liquid water path with ship-based observations of marine low clouds, Geophys. Res. Lett., 43, doi:10.1002/2016GL069061.
-
Painemal, D., et al. (2015), Mean Structure and Diurnal Cycle of Southeast Atlantic Boundary Layer Clouds: Insights from Satellite Observations and Multiscale Modeling Framework Simulations, J. Climate, 28, 324-341, doi:10.1175/JCLI-D-14-00368.1.
-
Painemal, D., et al. (2015), Aerosol variability, synoptic-scale processes, and their link to the cloud microphysics over the northeast Pacific during MAGIC, J. Geophys. Res., 120, doi:10.1002/2015JD023175.
-
Painemal, D., et al. (2014), Mean Structure and diurnal cycle of Southeast Atlantic boundary layer clouds: Insights from satellite observations and multiscale modeling framework simulations, J. Climate-46 (submitted).
-
Painemal, D., et al. (2014), Boundary layer regulation in the southeast Atlantic cloud microphysics during the biomass burning season as seen by the A-train satellite constellation, J. Geophys. Res., 119, doi:10.1002/2014JD022182.
-
Painemal, D., et al. (2013), The impact of horizontal heterogeneities, cloud fraction, and liquid water path on warm cloud effective radii from CERES-like Aqua MODIS retrievals, Atmos. Chem. Phys., 13, 9997-10003, doi:10.5194/acp-13-9997-2013.
-
Painemal, D., et al. (2013), The Diurnal Cycle of Cloud-Top Height and Cloud Cover over the Southeastern Pacific as Observed by GOES-10, J. Atmos. Sci., 70, 2393-2408, doi:10.1175/JAS-D-12-0325.1.
-
Painemal, D., and P. Minnis (2012), On the dependence of albedo on cloud microphysics over marine stratocumulus clouds regimes determined from Clouds and the Earth’s Radiant Energy System (CERES) data, J. Geophys. Res., 117, D06203, doi:10.1029/2011JD017120.
-
Painemal, D., et al. (2012), GOES-10 microphysical retrievals in marine warm clouds: Multi-instrument validation and daytime cycle over the southeast Pacific, J. Geophys. Res., 117, D19212, doi:10.1029/2012JD017822.
-
Painemal, D., and P. Zuidema (2010), Microphysical variability in southeast Pacific Stratocumulus clouds: synoptic conditions and radiative response, Atmos. Chem. Phys., 10, 6255-6269, doi:10.5194/acp-10-6255-2010.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Crosbie, E.C., et al. (2024), Measurement report: Cloud and environmental properties associated with aggregated shallow marine cumulus and cumulus congestus, Atmos. Chem. Phys., doi:10.5194/acp-24-6123-2024.
-
Li, X., et al. (2024), Process Modeling of Aerosol‐Cloud Interaction in Summertime Precipitating Shallow Cumulus Over the Western North Atlantic, J. Geophys. Res., 129, e2023JD039489, doi:10.1029/2023JD039489.
-
Siu, L.W., et al. (2024), Summarizing multiple aspects of triple collocation analysis in a single diagram, Frontiers in Remote Sensing, 5, 10.3389/frsen.2024.1395442, doi:10.3389/frsen.2024.1395442.
-
Siu, L.W., et al. (2024), Retrievals of aerosol optical depth over the western North Atlantic Ocean during ACTIVATE, Atmos. Meas. Tech., 17, 2739-2759, doi:10.5194/amt-17-2739-2024.
-
Xu, Y., et al. (2024), Boundary Layer Structures Over the Northwest Atlantic Derived From Airborne High Spectral Resolution Lidar and Dropsonde Measurements During the ACTIVATE Campaign, J. Geophys. Res., 129, e2023JD039878, doi:10.1029/2023JD039878.
-
Li, X., et al. (2023), Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part II: Aerosol–Meteorology–Cloud Interaction, J. Atmos. Sci., 80, 1025-1045, doi:10.1175/JAS-D-21-0324.1.
-
Sorooshian, A., et al. (2023), Spatially coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: the NASA ACTIVATE dataset, Earth Syst. Sci. Data, 15, 3419-3472, doi:10.5194/essd-15-3419-2023.
-
Tornow, F., et al. (2023), On the Impact of a Dry Intrusion Driving Cloud-Regime Transitions in a Midlatitude Cold-Air Outbreak, J. Atmos. Sci., 80, 2881-2896, doi:10.1175/JAS-D-23-0040.1.
-
Chen, ., et al. (2022), Impact of Meteorological Factors on the Mesoscale Morphology of Cloud Streets during a Cold-Air Outbreak over the Western North Atlantic, J. Atmos. Sci., 79, 2863-2879, doi:10.1175/JAS-D-22-0034.1.
-
Gryspeerdt, E., et al. (2022), The impact of sampling strategy on the cloud droplet number concentration estimated from satellite data, Atmos. Meas. Tech., doi:10.5194/amt-2021-371.
-
Tornow, F., et al. (2022), Dilution of Boundary Layer Cloud Condensation Nucleus Concentrations by Free Tropospheric Entrainment During Marine Cold Air Outbreaks, Geophys. Res. Lett., 49, e2022GL09844, doi:10.1029/2022GL098444.
-
Aldhaif, A.M., et al. (2021), An Aerosol Climatology and Implications for Clouds at a Remote Marine Site: Case Study Over Bermuda, J. Geophys. Res., 126, doi:10.1029/2020JD034038.
-
Corral, A., et al. (2021), All Rights Reserved. An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast – Part 1: Analysis of Aerosols, Gases, and Wet Deposition Chemistry, J. Geophys. Res., 126, e2020JD032592, doi:10.1029/2020JD032592.
-
Dadashazar, H., et al. (2021), Cloud drop number concentrations over the western North Atlantic Ocean: seasonal cycle, aerosol interrelationships, and other influential factors, Atmos. Chem. Phys., 21, 10499-10526, doi:10.5194/acp-21-10499-2021.
-
Doherty, S.J., et al. (2021), Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the Southeast Atlantic, Atmos. Chem. Phys., doi:10.5194/acp-2021-333.
-
Doherty, S.J., et al. (2021), Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the Southeast Atlantic, Atmos. Chem. Phys.(submitted), doi:10.5194/acp-2021-333.
-
Mardi, A.H., et al. (2021), Biomass Burning Over the United States East Coast and Western North Atlantic Ocean: Implications for Clouds and Air Quality, J. Geophys. Res., 126, e2021JD034916, doi:10.1029/2021JD034916.
-
Minnis, P., et al. (2021), CERES MODIS Cloud Product Retrievals for Edition 4—Part I: Algorithm Changes, IEEE Trans. Geosci. Remote Sens., 59, 2744-2780, doi:10.1109/TGRS.2020.3008866.
-
Seethala, C., et al. (2021), On Assessing ERA5 and MERRA2 Representations of Cold-Air Outbreaks Across the Gulf Stream, Geophys. Res. Lett..
-
Sorooshian, A., et al. (2020), Atmospheric Research Over the Western North Atlantic Ocean Region and North American East Coast: A Review of Past Work and Challenges Ahead, J. Geophys. Res., 125, e2019JD031626, doi:10.1029/2019JD031626.
-
Sorooshian, A., et al. (2019), Aerosol–Cloud–Meteorology Interaction Airborne Field Investigations: Using Lessons Learned from the U.S. West Coast in the Design of ACTIVATE off the U.S. East Coast, Bull. Am. Meteorol. Soc., 1511-1528, doi:10.1175/BAMS-D-18-0100.1.
-
Ham, S., et al. (2017), Cloud occurrences and cloud radiative effects (CREs) from CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat radar-lidar (RL) products, J. Geophys. Res., 122, doi:10.1002/2017JD026725.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.