Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.
The NASA GSFC Compact Airborne Formaldehyde Experiment (CAFE) instrument measures formaldehyde (CH2O) on both pressurized and unpressurized (high-altitude) aircraft. Using non-resonant laser induced fluorescence (LIF), CAFE possesses the high sensitivity, fast time response, and dynamic range needed to observe CH2O throughout the troposphere and lower stratosphere.
Formaldehyde is produced via the oxidation of hydrocarbons, notably methane (a ubiquitous greenhouse gas) and isoprene (the primary hydrocarbon emitted by vegetation). Observations of CH2O can thus provide information on many atmospheric processes, including:
- Convective transport of air from the surface to the upper troposphere
- Emissions of reactive hydrocarbons from cities, forests, and fires
- Atmospheric oxidizing capacity, which relates to formation of ozone and destruction of methane
In situ observations of CH2O are also crucial for validating retrievals from satellite instruments, such as OMI, TROPOMI, and TEMPO.