Warning message

Member access has been temporarily disabled. Please try again later.
The CRYSTAL FACE website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Improved modeling of cloudy-sky actinic flux using satellite cloud retrievals

Ryu, Y., A. Hodzic, G. Descombes, S. R. Hall, P. Minnis, D. Spangenberg, K. Ullmann, and S. Madronich (2017), Improved modeling of cloudy-sky actinic flux using satellite cloud retrievals, Geophys. Res. Lett., 44, doi:10.1002/2016GL071892.
Abstract: 

Clouds play a critical role in modulating tropospheric radiation and thus photochemistry. We develop a methodology for calculating the vertical distribution of tropospheric ultraviolet (300–420 nm) actinic fluxes using satellite cloud retrievals and a radiative transfer model. We demonstrate that our approach can accurately reproduce airborne-measured actinic fluxes from the 2013 Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign as a case study. The results show that the actinic flux is reduced below moderately thick clouds with increasing cloud optical depth and can be enhanced by a factor of 2 above clouds. Inside clouds, the actinic flux can be enhanced by up to 2.4 times in the upper part of clouds or reduced up to 10 times in the lower parts of clouds. Our study suggests that the use of satellite-derived actinic fluxes as input to chemistry-transport models can improve the accuracy of photochemistry calculations.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)
Mission: 
SEAC4RS