Satellite retrievals of columnar nitrogen dioxide (NO2) are essential for the characterization of nitrogen oxides (NOx) processes and impacts. The requirements of modeled a priori profiles present an outstanding bottleneck in operational satellite NO2 retrievals. In this work, we instead use neural network (NN) models trained from over 360,000 radiative transfer (RT) simulations to translate satellite radiances across 390-495nm to total NO2 vertical column (NO2C). Despite the wide variability of the many input parameters in the RT simulations, only a small number of key variables were found essential to the accurate prediction of NO2C, including observing angles, surface reflectivity and altitude, and several key principal component scores of the radiances. In addition to the NO2C, the NN training and cross-validation experiments show that the wider retrieval window allows some information about the vertical distribution to be retrieved (e.g., extending the rightmost wavelength from 465 to 495nm decreases the root-mean-square-error by 0.75%) under high-NO2C conditions. Applying to four months of TROPOMI data, the trained NN model shows strong ability to reproduce the NO2C observed by the ground-based Pandonia Global Network. The coefficient of determination (R2, 0.75) and normalized mean bias (NMB,-33%) are competitive with the level 2 operational TROPOMI product (R2 =0:77, NMB=−29%) over clear (geometriccloudfraction<0:2) and polluted (NO2C≥7:5×1015 molecules/cm2) regions. The NN retrieval approach is ~12 times faster than predictions using high spatial resolution (~3km) a priori profiles from chemical transport modeling, which is especially attractive to the handling of large volume satellite data.
Direct retrieval of NO2 vertical columns from UV-Vis (390-495 nm) spectral radiance using a neural network
Li, ., X. Xu, X. Liu, J. Wang, K. Sun, . van Geffen, Q. Zhu, . Ma, . Qin, . He, . Xie, . Ren, and R.C. Cohen (2022), Direct retrieval of NO2 vertical columns from UV-Vis (390-495 nm) spectral radiance using a neural network, Journal of Remote Sensing, ID, article, doi:10.34133/2022/9817134.
Abstract
PDF of Publication
Download from publisher's website
Research Program
Atmospheric Composition Modeling and Analysis Program (ACMAP)
Funding Sources
80NSSC19K0945; SV383019
Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.