Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Synonyms: 
CRYSTAL-FACE
Associated content: 

Condensation Nuclei Counter

The CNC counts particles in the approximate diameter range from 0.006 m to 2 m. The instrument operates by exposing the articles to saturated Flourinert vapor at 28 C and then cooling the sample in a condenser at 5 C. The supersaturation of the vapor increases as it is cooled and the vapor condenses on the particles causing them to grow to sizes which are easily detected. The resulting droplets are passed through a laser beam and the scattered light is detected. Individual particles are counted and are referred to as condensation nuclei (CN). Two CN Counters are provided in the instrument. One counts the particles after sampling from the atmosphere and the second counts particles that have survived heating to 192C. Lab experiments show that pure sulfuric acid particles smaller than 0.05 mm are volatilized in the heater. The heated channel detects when small particles are volatile and permits speculation about the composition. The CNC II contains an impactor collector which permits the collection of particles on electron microscope grids for later analysis. The collector consists of a two stages. In the first stage the pressure of the sample is reduced by a factor of two without loosing particles by impaction on walls. The second stage consists of a thin plate impactor which collect efficiently even at small Reynolds numbers. The system collects particles as small as 0.02 m at WB-57 cruise altitudes. As many as 25 samples can be collected in a flight.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Argus Tunable Diode Laser Instrument

Argus is a two channel, tunable diode laser instrument set up for the simultaneous, in situ measurement of CO (carbon monoxide), N2O (nitrous oxide) and CH4 (methane) in the troposphere and lower stratosphere. The instrument measures 40 x 30 x 30 cm and weighs 21 kg. An auxiliary, in-flight calibration system has dimensions 42 x 26 x 34 cm and weighs 17 kg.

The instrument is an absorption spectrometer operating in rapid scan, secondharmonic mode using frequency-modulated tunable lead-salt diode lasers emitting in the mid-infrared. Spectra are co-added for two seconds and are stored on a solid state disk for later analysis. The diode laser infrared beam is shaped by two anti-refection coated lenses into an f/40 beam focused at the entrance aperture of a multi-pass Herriott cell. The Herriott cell is common to both optical channels and is a modified astigmatic cell (New Focus Inc., Santa Clara, California).

The aspherical mirrors are coated with protected silver for optimal infrared reflectivity. The cell is set up for a 182-pass state for a total path of 36m. The pass number can be confirmed by visual spot pattern verification on the mirrors observed through the glass cell body when the cell is illuminated with a visible laser beam. However, instrument calibration is always carried out using calibrated gas standards with the Argus instrument operating at its infrared design wavelengths, 3.3 and 4.7 micrometers respectively for CH4 and CO detection. The electronic processing of the second harmonic spectra is done by standard phase sensitive amplifier techniques with demodulation occurring at twice the laser modulation frequency of 40 kHz. To optimize the secondharmonic signal amplitude in a changing ambient pressure environment the laser modulation amplitude is updated every 2 seconds to its optimal theoretical value based upon the measured pressure in the Herriott cell.

Measurements: 
Aircraft: 
Point(s) of Contact: 

Chemical Ionization Mass Spectrometer

The NOAA chemical ionization mass spectrometer (CIMS) instrument was developed for high-precision measurements of gaseous nitric acid (HNO3) specifically under high- and variable-humidity conditions in the boundary layer. The instrument’s background signals (i.e., signals detected when HNO3-free air is measured), which depend on the humidity and HNO3 concentration of the sample air, are the most important factor affecting the limit of detection (LOD). A new system to provide HNO3-free air without changing both the humidity and the pressure of the sampled air was developed to measure the background level accurately. The detection limit was about 23 parts per trillion by volume (pptv) for 50-s averages. Field tests, including an intercomparison with the diffusion scrubber technique, were carried out at a surface site in Tokyo, Japan, in October 2003 and June 2004. A comparison between the measured concentrations of HNO3 and particulate nitrate indicated that the interference from particulate nitrate was not detectable (i.e., less than about 1%). The intercomparison indicated that the two independent measurements of HNO3 agreed to within the combined uncertainties of these measurements.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Aircraft Laser Infrared Absorption Spectrometer

ALIAS (Aircraft Laser Infrared Absorption Spectrometer) measures total water, total water isotopes, carbon monoxide, and carbon dioxide isotope ratios. No other instrument provides real-time measurements of carbon dioxide isotope ratios which are clear identifiers of atmospheric transport (18O/17O/16O for stratospheric intrusion, 13C/12C for anthropogenic signals). ALIAS easily adapts to changing mission priorities and can be configured to measure HCl, CH4, SO2, and N2O by simply replacing a semiconductor laser. These measurements contribute to Atmospheric Composition Focus Area research by providing key data on how convective processes affect stratospheric composition, the development of cirrus particles and their affect on Earth's radiative balance, and health of the ozone layer through measurement of chlorine partitioning.

Measurements: 
Aircraft: 
Point(s) of Contact: 

Pages

Subscribe to RSS - CRYSTAL FACE